Abstract
A new distance function for fuzzy sets is introduced. It is based on the descriptive complexity, that is, the number of bits (on average) that are needed to describe an element in the symmetric difference of the two sets. The value of the distance gives the amount of additional information needed to describe either one of the two sets when the other is known. We prove that the distance function is a pseudo-metric, namely, it is non-negative, symmetric, it equals zero if the sets are identical and it satisfies the triangle inequality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deza, E., Deza, M.: Encyclopedia of Distances. Series in Computer Science, vol. 15. Springer (2009)
Zwick, R., Carlstein, E., Budescu, D.V.: Measures of similarity among fuzzy concepts: A comparative analysis. International Journal of Approximate Reasoning 1, 221–242 (1987)
Zadeh, L.A.: Fuzzy sets. Information Control 8, 338–353 (1965)
De Baets, B., De Meyer, H., Naessens, H.: A class of rational cardinality-based similarity measures. Journal of Computational and Applied Mathematics 132(1), 51–69 (2001)
De Baets, B., Janssens, S., De Meyer, H.: On the transitivity of a parametric family of cardinality-based similarity measures. International Journal of Approximate Reasoning 50(1), 104–116 (2009)
Bonissone, P.P.: A pattern recognition approach to the problem of linguistic approximation in system analysis. In: Proceeding of the International Conference on Cybernetics and Society, pp. 793–798 (1979)
Bustince, H., Barrenechea, E., Pagola, M.: Relationship between restricted dissimilarity functions, restricted equivalence functions and normal en-functions: Image thresholding invariant. Pattern Recognition Letters 29(4), 525–536 (2008)
Liu, X.: Entropy, distance measure and similarity measure of fuzzy sets and their relations. Fuzzy Sets Syst. 52(3), 305–318 (1992)
Fan, J., Xie, W.: Some notes on similarity measure and proximity measure. Fuzzy Sets and Systems 101(3), 403–412 (1999)
De Luca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Information and Control 20(4), 301–312 (1972)
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley (1999)
Ratsaby, J.: Information set distance. In: Proceedings of the Mini-Conference on Applied Theoretical Computer Science (MATCOS 2010), Koper, Slovenia, October 13-14, pp. 61–64. University of Primorska Press (2011)
Ratsaby, J.: Combinatorial information distance. In: Enchescu, C., Filip, F.G., Iantovics, B. (eds.) Advanced Computational Technologies, pp. 201–207. Romanian Academy Publishing House (2012)
Ratsaby, J.: Information efficiency. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 475–487. Springer, Heidelberg (2007)
Chester, U., Ratsaby, J.: Universal distance measure for images. In: Proceedings of the 27th IEEE Convention of Electrical Electronics Engineers in Israel (IEEEI 2012), Eilat, Israel, November 14-17, pp. 1–4 (2012)
Chester, U., Ratsaby, J.: Machine learning for image classification and clustering using a universal distance measure. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 59–72. Springer, Heidelberg (2013)
Couso, I., Garrido, L., Sánchez, L.: Similarity and dissimilarity measures between fuzzy sets: A formal relational study. Information Sciences 229, 122–141 (2013)
Mitchell, T.: Machine Learning. McGraw Hill (1997)
Giraud-Carrier, C., Martinez, T.: An efficient metric for heterogeneous inductive learning applications in the attribute-value language. In: Yfantis, E.A. (ed.) Intelligent Systems Third Golden West International Conference (Proceedings of GWIC 1994), pp. 341–350. Springer (1995) ISBN 978-0-7923-3422-4
Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Machine Learning 2(2), 139–172 (1987)
Gennari, J.H., Langley, P., Fisher, D.: Models of incremental concept formation. Artificial Intelligence 40(1-3), 11–61 (1989)
Cheng, Y., Fu, K.: Conceptual clustering in knowledge organization. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-7(5), 592–598 (1985)
Bhatia, S.K., Deogun, J.S.: Conceptual clustering in information retrieval. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 28(3), 427–436 (1998)
Talavera, L., Bejar, J.: Generality-based conceptual clustering with probabilistic concepts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(2), 196–206 (2001)
Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience, New York (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kovacs, L., Ratsaby, J. (2014). A New Pseudo-metric for Fuzzy Sets. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8467. Springer, Cham. https://doi.org/10.1007/978-3-319-07173-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-07173-2_19
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07172-5
Online ISBN: 978-3-319-07173-2
eBook Packages: Computer ScienceComputer Science (R0)