Nothing Special   »   [go: up one dir, main page]

Skip to main content

Iterated Local Search

  • Reference work entry
  • First Online:
Handbook of Heuristics

Abstract

Iterated local search is a metaheuristic that embeds an improvement heuristic within an iterative process generating a chain of solutions. Often, the improvement method is some kind of local search algorithm and, hence, the name of the metaheuristic. The iterative process in iterated local search consists in a perturbation of the current solution, leading to some intermediate solution that is used as a new starting solution for the improvement method. An additional acceptance criterion decides which of the solutions to keep for continuing this process. This simple idea has led to some very powerful algorithms that have been successfully used to tackle hard combinatorial optimization problems. In this chapter, we review the main ideas of iterated local search, exemplify its application to combinatorial problems, discuss historical aspects of the development of the method, and give an overview of some successful applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aarts EHL, Lenstra JK (eds) (1997) Local Search in Combinatorial Optimization. John Wiley & Sons, Chichester, UK

    Google Scholar 

  2. Ahuja RK, Ergun O, Orlin JB, Punnen AP (2002) A survey of very large-scale neighborhood search techniques. Discret Appl Math 123(1–3):75–102

    Google Scholar 

  3. Applegate D, Bixby RE, Chvátal V, Cook WJ (1999) Finding tours in the TSP. Technical report 99885, Forschungsinstitut für Diskrete Mathematik, University of Bonn

    Google Scholar 

  4. Applegate D, Cook WJ, Rohe A (2003) Chained Lin-Kernighan for large traveling salesman problems. INFORMS J Comput 15(1):82–92

    Google Scholar 

  5. Applegate D, Bixby RE, Chvátal V, Cook WJ, Espinoza D, Goycoolea M, Helsgaun K (2009) Certification of an optimal TSP tour through 85,900 cities. Oper Res Lett 37(1):11–15

    Google Scholar 

  6. Auger A, Hansen N (2005) A restart CMA evolution strategy with increasing population size. In: Proceedings of CEC 2005. IEEE Press, Piscataway, pp 1769–1776

    Google Scholar 

  7. Bäck T, Fogel DB, Michalewicz Z (1997) Handbook of evolutionary computation. IOP Publishing Ltd., Bristol

    Google Scholar 

  8. Battiti R, Tecchiolli G (1994) The reactive tabu search. ORSA J Comput 6(2):126–140

    Google Scholar 

  9. Battiti R, Brunato M, Mascia F (2008) Reactive search and intelligent optimization. Operations research/computer science interfaces, vol 45. Springer, New York

    Google Scholar 

  10. Baum EB (1986) Iterated descent: a better algorithm for local search in combinatorial optimization problems, manuscript

    Google Scholar 

  11. Baum EB (1986) Towards practical “neural” computation for combinatorial optimization problems. In: Neural networks for computing. AIP conference proceedings, pp 53–64

    Google Scholar 

  12. Baxter J (1981) Local optima avoidance in depot location. J Oper Res Soc 32(9): 815–819

    Article  Google Scholar 

  13. Benlic U, Hao JK (2013) Breakout local search for the quadratic assignment problem. Appl Math Comput 219(9):4800–4815

    MathSciNet  MATH  Google Scholar 

  14. Bentley JL (1992) Fast algorithms for geometric traveling salesman problems. ORSA J Comput 4(4):387–411

    Article  MathSciNet  MATH  Google Scholar 

  15. Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151

    Article  MATH  Google Scholar 

  16. Brucker P, Hurink J, Werner F (1996) Improving local search heuristics for some scheduling problems—part I. Discret Appl Math 65(1–3):97–122

    Article  MATH  Google Scholar 

  17. Brucker P, Hurink J, Werner F (1997) Improving local search heuristics for some scheduling problems—part II. Discret Appl Math 72(1–2):47–69

    Article  MATH  Google Scholar 

  18. Buson E, Roberti R, Toth P (2014) A reduced-cost iterated local search heuristic for the fixed-charge transportation problem. Oper Res 62(5):1095–1106

    Article  MathSciNet  MATH  Google Scholar 

  19. Cattaruzza D, Absi N, Feillet D, Vigo D (2014) An iterated local search for the multi-commodity multi-trip vehicle routing problem with time windows. Comput Oper Res 51:257–267

    Article  MATH  Google Scholar 

  20. Cerný V (1985) A thermodynamical approach to the traveling salesman problem. J Optim Theory Appl 45(1):41–51

    Article  MathSciNet  MATH  Google Scholar 

  21. Codenotti B, Manzini G, Margara L, Resta G (1996) Perturbation: an efficient technique for the solution of very large instances of the Euclidean TSP. INFORMS J Comput 8(2): 125–133

    Article  MATH  Google Scholar 

  22. Congram RK, Potts CN, van de Velde S (2002) An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. INFORMS J Comput 14(1): 52–67

    Article  MathSciNet  MATH  Google Scholar 

  23. Cordón O, Damas S (2006) Image registration with iterated local search. J Heuristics 12(1–2): 73–94

    Article  MATH  Google Scholar 

  24. Corte AD, Sörensen K (2016) An iterated local search algorithm for water distribution network design optimization. Networks 67(3):187–198

    Article  Google Scholar 

  25. Della Croce F, Garaix T, Grosso A (2012) Iterated local search and very large neighborhoods for the parallel-machines total tardiness problem. Comput Oper Res 39(6):1213–1217

    Article  MathSciNet  MATH  Google Scholar 

  26. den Besten ML, Stützle T, Dorigo M (2001) Design of iterated local search algorithms: an example application to the single machine total weighted tardiness problem. In: Boers EJW et al (eds) Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2001. LNCS, vol 2037. Springer, Heidelberg, pp 441–452

    MATH  Google Scholar 

  27. Dong X, Huang H, Chen P (2009) An iterated local search algorithm for the permutation flowshop problem with total flowtime criterion. Comput Oper Res 36(5):1664–1669

    Article  MathSciNet  MATH  Google Scholar 

  28. Dong X, Ping, Huang H, Nowak M (2013) A multi-restart iterated local search algorithm for the permutation flow shop problem minimizing total flow time. Comput Oper Res 40(2): 627–632

    Article  MATH  Google Scholar 

  29. Dorigo M, Stützle T (2004) Ant Colony Optimization. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  30. Essafi I, Mati Y, Dauzère-Pèrés S (2008) A genetic local search algorithm for minimizing total weighted tardiness in the job-shop scheduling problem. Comput Oper Res 35(8):2599–2616

    Article  MathSciNet  MATH  Google Scholar 

  31. Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim 6:109–113

    MathSciNet  MATH  Google Scholar 

  32. Fernandez-Viagas V, Framinan JM (2014) On insertion tie-breaking rules in heuristics for the permutation flowshop scheduling problem. Comput Oper Res 45:60–67

    MathSciNet  MATH  Google Scholar 

  33. Fernandez-Viagas V, Ruiz R, Framiñan JM (2017) A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation. Eur J Oper Res 257(3):707–721. https://doi.org/10.1016/j.ejor.2016.09.055

    Article  MathSciNet  MATH  Google Scholar 

  34. Fischetti M, Monaci M, Salvagnin D (2012) Three ideas for the quadratic assignment problem. Oper Res 60(4):954–964

    Article  MathSciNet  MATH  Google Scholar 

  35. Framinan JM, Gupta JN, Leisten R (2004) A review and classification of heuristics for permutation flow-shop scheduling with makespan objective. J Oper Res Soc 55(12): 1243–1255

    Article  MATH  Google Scholar 

  36. Geiger MJ (2011) Decision support for multi-objective flow shop scheduling by the Pareto iterated local search methodology. Comput Ind Eng 61(3):805–812

    Article  Google Scholar 

  37. Gendreau M, Potvin JY (eds) (2010) Handbook of metaheuristics. International series in operations research & management science, vol 146, 2nd edn. Springer, New York

    Google Scholar 

  38. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549

    Article  MathSciNet  MATH  Google Scholar 

  39. Glover F, Kochenberger G (eds) (2002) Handbook of metaheuristics. Kluwer Academic Publishers, Norwell

    MATH  Google Scholar 

  40. Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Boston

    Book  MATH  Google Scholar 

  41. Glover F, Laguna M, Martí R (2002) Scatter search and path relinking: advances and applications. In: [38], pp 1–35

    Google Scholar 

  42. Grasas A, Juan AA, Lourenço HR (2016) SimILS: a simulation-based extension of the iterated local search metaheuristic for stochastic combinatorial optimization. J Simul 10(1):69–77

    Article  Google Scholar 

  43. Grosso A, Della Croce F, Tadei R (2004) An enhanced dynasearch neighborhood for the single-machine total weighted tardiness scheduling problem. Oper Res Lett 32(1):68–72

    Article  MathSciNet  MATH  Google Scholar 

  44. Grosso A, Jamali ARMJU, Locatelli M (2009) Finding maximin Latin hypercube designs by iterated local search heuristics. Eur J Oper Res 197(2):541–547

    Article  MATH  Google Scholar 

  45. Hansen P, Mladenović N (2001) Variable neighborhood search: principles and applications. Eur J Oper Res 130(3):449–467

    Article  MathSciNet  MATH  Google Scholar 

  46. Hansen P, Mladenović N, Brimberg J, Pérez JAM (2010) Variable neighborhood search. In: [36], pp 61–86

    Google Scholar 

  47. Hashimoto H, Yagiura M, Ibaraki T (2008) An iterated local search algorithm for the time-dependent vehicle routing problem with time windows. Discret Optim 5(2):434–456

    Article  MathSciNet  MATH  Google Scholar 

  48. Hejazi SR, Saghafian S (2005) Flowshop-scheduling problems with makespan criterion: a review. Int J Prod Res 43(14):2895–2929

    Article  MATH  Google Scholar 

  49. Helsgaun K (2000) An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur J Oper Res 126:106–130

    Article  MathSciNet  MATH  Google Scholar 

  50. Helsgaun K (2009) General k-opt submoves for the Lin-Kernighan TSP heuristic. Math Program Comput 1(2–3):119–163

    Article  MathSciNet  MATH  Google Scholar 

  51. Hong I, Kahng AB, Moon BR (1997) Improved large-step Markov chain variants for the symmetric TSP. J Heuristics 3(1):63–81

    Article  MATH  Google Scholar 

  52. Hoos HH (2012) Automated algorithm configuration and parameter tuning. In: Hamadi Y, Monfroy E, Saubion F (eds) Autonomous search. Springer, Berlin, pp 37–71

    Google Scholar 

  53. Hoos HH, Stützle T (2005) Stochastic local search—foundations and applications. Morgan Kaufmann Publishers, San Francisco

    MATH  Google Scholar 

  54. Hurtgen M, Maun JC (2010) Optimal PMU placement using iterated local search. Int J Electr Power Energy Syst 32(8):857–860

    Article  Google Scholar 

  55. Hussin MS, Stützle T (2009) Hierarchical iterated local search for the quadratic assignment problem. In: Blesa MJ et al (eds) Hybrid metaheuristics. LNCS, vol 5818. Springer, Heidelberg, pp 115–129

    Chapter  Google Scholar 

  56. Hutter F, Hoos HH, Leyton-Brown K, Stützle T (2009) ParamILS: an automatic algorithm configuration framework. J Artif Intell Res 36:267–306

    Article  MATH  Google Scholar 

  57. Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Coello Coello CA (ed) LION 5. LNCS, vol 6683. Springer, Heidelberg, pp 507–523

    Google Scholar 

  58. Ibaraki T, Imahori S, Nonobe K, Sobue K, Uno T, Yagiura M (2008) An iterated local search algorithm for the vehicle routing problem with convex time penalty functions. Discret Appl Math 156(11):2050–2069

    Article  MathSciNet  MATH  Google Scholar 

  59. Imamichi T, Yagiura M, Nagamochi H (2009) An iterated local search algorithm based on nonlinear programming for the irregular strip packing problem. Discret Optim 6(4): 345–361

    Article  MathSciNet  MATH  Google Scholar 

  60. Johnson DS (1990) Local optimization and the traveling salesman problem. In: Paterson M (ed) 17th international colloquium on Automata, languages and programming. LNCS, vol 443. Springer, Heidelberg, pp 446–461

    Chapter  Google Scholar 

  61. Johnson DS, McGeoch LA (1997) The traveling salesman problem: a case study in local optimization. In: Aarts EHL, Lenstra JK (eds) Local search in combinatorial optimization. John Wiley & Sons, Chichester, pp 215–310

    Google Scholar 

  62. Juan AA, Lourenço HR, Mateo M, Luo R, Castellà Q (2014) Using iterated local search for solving the flow-shop problem: parallelization, parametrization, and randomization issues. Int Trans Oper Res 21(1):103–126

    Article  MathSciNet  MATH  Google Scholar 

  63. Katayama K, Narihisa H (1999) Iterated local search approach using genetic transformation to the traveling salesman problem. In: Banzhaf W et al (eds) Proceedings of GECCO 1999, vol 1. Morgan Kaufmann Publishers, San Francisco, pp 321–328

    Google Scholar 

  64. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  MATH  Google Scholar 

  65. Kramer O (2010) Iterated local search with Powell’s method: a memetic algorithm for continuous global optimization. Memetic Comput 2(1):69–83

    Article  Google Scholar 

  66. Kreipl S (2000) A large step random walk for minimizing total weighted tardiness in a job shop. J Sched 3(3):125–138

    Article  MathSciNet  MATH  Google Scholar 

  67. Lai X, Hao JK (2016) Iterated maxima search for the maximally diverse grouping problem. Eur J Oper Res 254(3):780–800

    Article  MathSciNet  MATH  Google Scholar 

  68. Laurent B, Hao JK (2009) Iterated local search for the multiple depot vehicle scheduling problem. Comput Ind Eng 57(1):277–286

    Article  Google Scholar 

  69. Liao T, Stützle T (2013) Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization. In: Proceedings of CEC 2013. IEEE Press, Piscataway, pp 1938–1944

    Google Scholar 

  70. Lin S, Kernighan B (1973) An effective heuristic algorithm for the traveling salesman problem. Oper Res 21(2):498–516

    Article  MathSciNet  MATH  Google Scholar 

  71. López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package, iterated race for automatic algorithm configuration. Technical report, TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles. http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf

  72. López-Ibáñez M, Dubois-Lacoste J, Pérez Cáceres L, Stützle T, Birattari M (2016) The irace package: iterated racing for automatic algorithm configuration. Oper Res Perspectives 3: 43–58

    Article  MathSciNet  Google Scholar 

  73. Lourenço HR (1995) Job-shop scheduling: computational study of local search and large-step optimization methods. Eur J Oper Res 83(2):347–364

    Article  MATH  Google Scholar 

  74. Lourenço HR, Martin O, Stützle T (2002) Iterated local search. In: [38], pp 321–353

    Google Scholar 

  75. Lourenço HR, Martin O, Stützle T (2010) Iterated local search: framework and applications. In: [36], chap 9, pp 363–397

    Google Scholar 

  76. Maniezzo V, Stützle T, Voß S (eds) (2009) Matheuristics—hybridizing metaheuristics and mathematical programming. Annals of information systems, vol 10. Springer, New York

    Google Scholar 

  77. Martin O, Otto SW (1995) Partitioning of unstructured meshes for load balancing. Concurr Pract Exp 7(4):303–314

    Article  Google Scholar 

  78. Martin O, Otto SW (1996) Combining simulated annealing with local search heuristics. Ann Oper Res 63:57–75

    Article  MATH  Google Scholar 

  79. Martin O, Otto SW, Felten EW (1991) Large-step Markov chains for the traveling salesman problem. Complex Syst 5(3):299–326

    MathSciNet  MATH  Google Scholar 

  80. Martin O, Otto SW, Felten EW (1992) Large-step Markov chains for the TSP incorporating local search heuristics. Oper Res Lett 11(4):219–224

    Article  MathSciNet  MATH  Google Scholar 

  81. Mati Y, Dauzère-Pèrés S, Lahlou C (2011) A general approach for optimizing regular criteria in the job-shop scheduling problem. Eur J Oper Res 212(1):33–42

    Article  MathSciNet  MATH  Google Scholar 

  82. Melo Silva M, Subramanian A, Ochi LS (2015) An iterated local search heuristic for the split delivery vehicle routing problem. Comput Oper Res 53:234–249

    Article  MathSciNet  MATH  Google Scholar 

  83. Merz P, Freisleben B (2000) Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans Evol Comput 4(4):337–352

    Article  Google Scholar 

  84. Merz P, Huhse J (2008) An iterated local search approach for finding provably good solutions for very large TSP instances. In: Rudolph G et al (eds) PPSN X. LNCS, vol 5199. Springer, Heidelberg, pp 929–939

    Google Scholar 

  85. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  86. Michallet J, Prins C, Yalaoui F, Vitry G (2014) Multi-start iterated local search for the periodic vehicle routing problem with time windows and time spread constraints on services. Comput Oper Res 41:196–207

    Article  MathSciNet  MATH  Google Scholar 

  87. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100

    Article  MathSciNet  MATH  Google Scholar 

  88. Morris P (1993) The breakout method for escaping from local minima. In: Proceedings of the 11th National Conference on Artificial Intelligence. AAAI Press/MIT Press, Menlo Park, pp 40–45

    Google Scholar 

  89. Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw Hill, London, pp 219–234

    Google Scholar 

  90. Mühlenbein H (1991) Evolution in time and space—the parallel genetic algorithm. In: Rawlins G (ed) Foundations of genetic algorithms (FOGA). Morgan Kaufmann Publishers, San Mateo, pp 316–337

    Google Scholar 

  91. M’Hallah R (2014) An iterated local search variable neighborhood descent hybrid heuristic for the total earliness tardiness permutation flow shop. Int J Prod Res 52(13):3802–3819

    Article  Google Scholar 

  92. Nawaz M, Enscore E Jr, Ham I (1983) A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1):91–95

    Article  Google Scholar 

  93. Nguyen VP, Prins C, Prodhon C (2012) A multi-start iterated local search with tabu list and path relinking for the two-echelon location-routing problem. Eng Appl Artif Intell 25(1): 56–71

    Article  Google Scholar 

  94. Palhazi Cuervo D, Goos P, Sörensen K, Arráiz E (2014) An iterated local search algorithm for the vehicle routing problem with Backhauls. Eur J Oper Res 237(2):454–464

    Article  MATH  Google Scholar 

  95. Pan QK, Ruiz R (2012) Local search methods for the flowshop scheduling problem with flowtime minimization. Eur J Oper Res 222(1):31–43

    Article  MathSciNet  MATH  Google Scholar 

  96. Resende MGC, Ribeiro CC (2010) Greedy randomized adaptive search procedures: advances, hybridizations, and applications. In: [36], pp 283–319

    Google Scholar 

  97. Ribas I, Companys R, Tort-Martorell X (2013) An efficient iterated local search algorithm for the total tardiness blocking flow shop problem. Int J Prod Res 51(17):5238–5252

    Article  Google Scholar 

  98. Ruiz R, Maroto C (2005) A comprehensive review and evaluation of permutation flowshop heuristics. Eur J Oper Res 165(2):479–494

    Article  MATH  Google Scholar 

  99. Ruiz R, Stützle T (2007) A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur J Oper Res 177(3):2033–2049

    Article  MATH  Google Scholar 

  100. Schreiber GR, Martin O (1999) Cut size statistics of graph bisection heuristics. SIAM J Optim 10(1):231–251

    Article  MathSciNet  MATH  Google Scholar 

  101. Shaw P (1998) Using constraint programming and local search methods to solve vehicle routing problems. In: Maher M, Puget JF (eds) CP’98. LNCS, vol 1520. Springer, Heidelberg, pp 417–431

    Google Scholar 

  102. Stützle T (1998) Applying iterated local search to the permutation flow shop problem. Technical report AIDA–98–04, FG Intellektik, FB Informatik, TU Darmstadt

    Google Scholar 

  103. Stützle T (1998) Local search algorithms for combinatorial problems—analysis, improvements, and new applications. PhD thesis, FB Informatik, TU Darmstadt

    Google Scholar 

  104. Stützle T (2006) Iterated local search for the quadratic assignment problem. Eur J Oper Res 174(3):1519–1539

    Article  MathSciNet  MATH  Google Scholar 

  105. Stützle T, Hoos HH (2001) Analysing the run-time behaviour of iterated local search for the travelling salesman problem. In: Hansen P, Ribeiro C (eds) Essays and surveys on metaheuristics. Kluwer Academic Publishers, Boston, pp 589–611

    Google Scholar 

  106. Stützle T, López-Ibáñez M (2015) Automatic (offline) configuration of algorithms. In: Laredo JLJ, Silva S, Esparcia-Alcázar AI (eds) GECCO (Companion). ACM Press, New York, pp 681–702

    Chapter  Google Scholar 

  107. Stützle T, Birattari M, Hoos HH (eds) (2007). SLS 2007. LNCS, vol 4638. Springer, Heidelberg

    Google Scholar 

  108. Subramanian A, Battarra M, Potts CN (2014) An iterated local search heuristic for the single machine total weighted tardiness scheduling problem with sequence-dependent setup times. Int J Prod Res 52(9):2729–2742

    Article  Google Scholar 

  109. Taillard ÉD (1990) Some efficient heuristic methods for the flow shop sequencing problem. Eur J Oper Res 47(1):65–74

    Article  MathSciNet  MATH  Google Scholar 

  110. Taillard ÉD (1995) Comparison of iterative searches for the quadratic assignment problem. Locat Sci 3(2):87–105

    Article  MATH  Google Scholar 

  111. Thierens D (2004) Population-based iterated local search: restricting the neighborhood search by crossover. In: Deb K et al (eds) GECCO 2004, part II. LNCS, vol 3103. Springer, Heidelberg, pp 234–245

    Google Scholar 

  112. Ulder NLJ, Aarts EHL, Bandelt HJ, van Laarhoven PJM, Pesch E (1991) Genetic local search algorithms for the travelling salesman problem. In: Schwefel HP, Männer R (eds) Proceedings of PPSN-I. LNCS, vol 496. Springer, Heidelberg, pp 109–116

    Google Scholar 

  113. Urlings T, Ruiz R, Stützle T (2010) Shifting representation search for hybrid flexible flowline problems. Eur J Oper Res 207(2):1086–1095

    Article  MathSciNet  MATH  Google Scholar 

  114. Vaessens RJM, Aarts EHL, Lenstra JK (1998) A local search template. Comput Oper Res 25(11):969–979

    Article  MathSciNet  MATH  Google Scholar 

  115. Vansteenwegen P, Mateo M (2014) An iterated local search algorithm for the single-vehicle cyclic inventory routing problem. Eur J Oper Res 237(3):802–813

    Article  MATH  Google Scholar 

  116. Vansteenwegen P, Souffriau W, Berghe GV, Oudheusden DV (2009) Iterated local search for the team orienteering problem with time windows. Comput Oper Res 36(12):3281–3290

    Article  MATH  Google Scholar 

  117. Vaz Penna PH, Subramanian A, Ochi LS (2013) An iterated local search heuristic for the heterogeneous fleet vehicle routing problem. J Heuristics 19(2):201–232

    Article  Google Scholar 

  118. Voudouris C, Tsang EPK (2002) Guided local search. In: [38], pp 185–218

    Google Scholar 

  119. Wolf S, Merz P (2009) Iterated local search for minimum power symmetric connectivity in wireless networks. In: Cotta C, Cowling P (eds) Proceedings of EvoCOP 2009. LNCS, vol 5482. Springer, Heidelberg, pp 192–203

    Google Scholar 

  120. Xu H, Lü Z, Cheng TCE (2014) Iterated local search for single-machine scheduling with sequence-dependent setup times to minimize total weighted tardiness. J Sched 17(3): 271–287

    Article  MathSciNet  MATH  Google Scholar 

  121. Yang Y, Kreipl S, Pinedo M (2000) Heuristics for minimizing total weighted tardiness in flexible flow shops. J Sched 3(2):89–108

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work received support from the COMEX project within the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office. Thomas Stützle acknowledges support from the Belgian F.R.S.-FNRS, of which he is a senior research associate. Rubén Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project “SCHEYARD – Optimization of Scheduling Problems in Container Yards” (No. DPI2015-65895-R) financed by FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Stützle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stützle, T., Ruiz, R. (2018). Iterated Local Search. In: Martí, R., Pardalos, P., Resende, M. (eds) Handbook of Heuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-07124-4_8

Download citation

Publish with us

Policies and ethics