Abstract
Iterated local search is a metaheuristic that embeds an improvement heuristic within an iterative process generating a chain of solutions. Often, the improvement method is some kind of local search algorithm and, hence, the name of the metaheuristic. The iterative process in iterated local search consists in a perturbation of the current solution, leading to some intermediate solution that is used as a new starting solution for the improvement method. An additional acceptance criterion decides which of the solutions to keep for continuing this process. This simple idea has led to some very powerful algorithms that have been successfully used to tackle hard combinatorial optimization problems. In this chapter, we review the main ideas of iterated local search, exemplify its application to combinatorial problems, discuss historical aspects of the development of the method, and give an overview of some successful applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aarts EHL, Lenstra JK (eds) (1997) Local Search in Combinatorial Optimization. John Wiley & Sons, Chichester, UK
Ahuja RK, Ergun O, Orlin JB, Punnen AP (2002) A survey of very large-scale neighborhood search techniques. Discret Appl Math 123(1–3):75–102
Applegate D, Bixby RE, Chvátal V, Cook WJ (1999) Finding tours in the TSP. Technical report 99885, Forschungsinstitut für Diskrete Mathematik, University of Bonn
Applegate D, Cook WJ, Rohe A (2003) Chained Lin-Kernighan for large traveling salesman problems. INFORMS J Comput 15(1):82–92
Applegate D, Bixby RE, Chvátal V, Cook WJ, Espinoza D, Goycoolea M, Helsgaun K (2009) Certification of an optimal TSP tour through 85,900 cities. Oper Res Lett 37(1):11–15
Auger A, Hansen N (2005) A restart CMA evolution strategy with increasing population size. In: Proceedings of CEC 2005. IEEE Press, Piscataway, pp 1769–1776
Bäck T, Fogel DB, Michalewicz Z (1997) Handbook of evolutionary computation. IOP Publishing Ltd., Bristol
Battiti R, Tecchiolli G (1994) The reactive tabu search. ORSA J Comput 6(2):126–140
Battiti R, Brunato M, Mascia F (2008) Reactive search and intelligent optimization. Operations research/computer science interfaces, vol 45. Springer, New York
Baum EB (1986) Iterated descent: a better algorithm for local search in combinatorial optimization problems, manuscript
Baum EB (1986) Towards practical “neural” computation for combinatorial optimization problems. In: Neural networks for computing. AIP conference proceedings, pp 53–64
Baxter J (1981) Local optima avoidance in depot location. J Oper Res Soc 32(9): 815–819
Benlic U, Hao JK (2013) Breakout local search for the quadratic assignment problem. Appl Math Comput 219(9):4800–4815
Bentley JL (1992) Fast algorithms for geometric traveling salesman problems. ORSA J Comput 4(4):387–411
Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151
Brucker P, Hurink J, Werner F (1996) Improving local search heuristics for some scheduling problems—part I. Discret Appl Math 65(1–3):97–122
Brucker P, Hurink J, Werner F (1997) Improving local search heuristics for some scheduling problems—part II. Discret Appl Math 72(1–2):47–69
Buson E, Roberti R, Toth P (2014) A reduced-cost iterated local search heuristic for the fixed-charge transportation problem. Oper Res 62(5):1095–1106
Cattaruzza D, Absi N, Feillet D, Vigo D (2014) An iterated local search for the multi-commodity multi-trip vehicle routing problem with time windows. Comput Oper Res 51:257–267
Cerný V (1985) A thermodynamical approach to the traveling salesman problem. J Optim Theory Appl 45(1):41–51
Codenotti B, Manzini G, Margara L, Resta G (1996) Perturbation: an efficient technique for the solution of very large instances of the Euclidean TSP. INFORMS J Comput 8(2): 125–133
Congram RK, Potts CN, van de Velde S (2002) An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. INFORMS J Comput 14(1): 52–67
Cordón O, Damas S (2006) Image registration with iterated local search. J Heuristics 12(1–2): 73–94
Corte AD, Sörensen K (2016) An iterated local search algorithm for water distribution network design optimization. Networks 67(3):187–198
Della Croce F, Garaix T, Grosso A (2012) Iterated local search and very large neighborhoods for the parallel-machines total tardiness problem. Comput Oper Res 39(6):1213–1217
den Besten ML, Stützle T, Dorigo M (2001) Design of iterated local search algorithms: an example application to the single machine total weighted tardiness problem. In: Boers EJW et al (eds) Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2001. LNCS, vol 2037. Springer, Heidelberg, pp 441–452
Dong X, Huang H, Chen P (2009) An iterated local search algorithm for the permutation flowshop problem with total flowtime criterion. Comput Oper Res 36(5):1664–1669
Dong X, Ping, Huang H, Nowak M (2013) A multi-restart iterated local search algorithm for the permutation flow shop problem minimizing total flow time. Comput Oper Res 40(2): 627–632
Dorigo M, Stützle T (2004) Ant Colony Optimization. MIT Press, Cambridge, MA
Essafi I, Mati Y, Dauzère-Pèrés S (2008) A genetic local search algorithm for minimizing total weighted tardiness in the job-shop scheduling problem. Comput Oper Res 35(8):2599–2616
Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim 6:109–113
Fernandez-Viagas V, Framinan JM (2014) On insertion tie-breaking rules in heuristics for the permutation flowshop scheduling problem. Comput Oper Res 45:60–67
Fernandez-Viagas V, Ruiz R, Framiñan JM (2017) A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation. Eur J Oper Res 257(3):707–721. https://doi.org/10.1016/j.ejor.2016.09.055
Fischetti M, Monaci M, Salvagnin D (2012) Three ideas for the quadratic assignment problem. Oper Res 60(4):954–964
Framinan JM, Gupta JN, Leisten R (2004) A review and classification of heuristics for permutation flow-shop scheduling with makespan objective. J Oper Res Soc 55(12): 1243–1255
Geiger MJ (2011) Decision support for multi-objective flow shop scheduling by the Pareto iterated local search methodology. Comput Ind Eng 61(3):805–812
Gendreau M, Potvin JY (eds) (2010) Handbook of metaheuristics. International series in operations research & management science, vol 146, 2nd edn. Springer, New York
Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549
Glover F, Kochenberger G (eds) (2002) Handbook of metaheuristics. Kluwer Academic Publishers, Norwell
Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Boston
Glover F, Laguna M, Martí R (2002) Scatter search and path relinking: advances and applications. In: [38], pp 1–35
Grasas A, Juan AA, Lourenço HR (2016) SimILS: a simulation-based extension of the iterated local search metaheuristic for stochastic combinatorial optimization. J Simul 10(1):69–77
Grosso A, Della Croce F, Tadei R (2004) An enhanced dynasearch neighborhood for the single-machine total weighted tardiness scheduling problem. Oper Res Lett 32(1):68–72
Grosso A, Jamali ARMJU, Locatelli M (2009) Finding maximin Latin hypercube designs by iterated local search heuristics. Eur J Oper Res 197(2):541–547
Hansen P, Mladenović N (2001) Variable neighborhood search: principles and applications. Eur J Oper Res 130(3):449–467
Hansen P, Mladenović N, Brimberg J, Pérez JAM (2010) Variable neighborhood search. In: [36], pp 61–86
Hashimoto H, Yagiura M, Ibaraki T (2008) An iterated local search algorithm for the time-dependent vehicle routing problem with time windows. Discret Optim 5(2):434–456
Hejazi SR, Saghafian S (2005) Flowshop-scheduling problems with makespan criterion: a review. Int J Prod Res 43(14):2895–2929
Helsgaun K (2000) An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur J Oper Res 126:106–130
Helsgaun K (2009) General k-opt submoves for the Lin-Kernighan TSP heuristic. Math Program Comput 1(2–3):119–163
Hong I, Kahng AB, Moon BR (1997) Improved large-step Markov chain variants for the symmetric TSP. J Heuristics 3(1):63–81
Hoos HH (2012) Automated algorithm configuration and parameter tuning. In: Hamadi Y, Monfroy E, Saubion F (eds) Autonomous search. Springer, Berlin, pp 37–71
Hoos HH, Stützle T (2005) Stochastic local search—foundations and applications. Morgan Kaufmann Publishers, San Francisco
Hurtgen M, Maun JC (2010) Optimal PMU placement using iterated local search. Int J Electr Power Energy Syst 32(8):857–860
Hussin MS, Stützle T (2009) Hierarchical iterated local search for the quadratic assignment problem. In: Blesa MJ et al (eds) Hybrid metaheuristics. LNCS, vol 5818. Springer, Heidelberg, pp 115–129
Hutter F, Hoos HH, Leyton-Brown K, Stützle T (2009) ParamILS: an automatic algorithm configuration framework. J Artif Intell Res 36:267–306
Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Coello Coello CA (ed) LION 5. LNCS, vol 6683. Springer, Heidelberg, pp 507–523
Ibaraki T, Imahori S, Nonobe K, Sobue K, Uno T, Yagiura M (2008) An iterated local search algorithm for the vehicle routing problem with convex time penalty functions. Discret Appl Math 156(11):2050–2069
Imamichi T, Yagiura M, Nagamochi H (2009) An iterated local search algorithm based on nonlinear programming for the irregular strip packing problem. Discret Optim 6(4): 345–361
Johnson DS (1990) Local optimization and the traveling salesman problem. In: Paterson M (ed) 17th international colloquium on Automata, languages and programming. LNCS, vol 443. Springer, Heidelberg, pp 446–461
Johnson DS, McGeoch LA (1997) The traveling salesman problem: a case study in local optimization. In: Aarts EHL, Lenstra JK (eds) Local search in combinatorial optimization. John Wiley & Sons, Chichester, pp 215–310
Juan AA, Lourenço HR, Mateo M, Luo R, Castellà Q (2014) Using iterated local search for solving the flow-shop problem: parallelization, parametrization, and randomization issues. Int Trans Oper Res 21(1):103–126
Katayama K, Narihisa H (1999) Iterated local search approach using genetic transformation to the traveling salesman problem. In: Banzhaf W et al (eds) Proceedings of GECCO 1999, vol 1. Morgan Kaufmann Publishers, San Francisco, pp 321–328
Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680
Kramer O (2010) Iterated local search with Powell’s method: a memetic algorithm for continuous global optimization. Memetic Comput 2(1):69–83
Kreipl S (2000) A large step random walk for minimizing total weighted tardiness in a job shop. J Sched 3(3):125–138
Lai X, Hao JK (2016) Iterated maxima search for the maximally diverse grouping problem. Eur J Oper Res 254(3):780–800
Laurent B, Hao JK (2009) Iterated local search for the multiple depot vehicle scheduling problem. Comput Ind Eng 57(1):277–286
Liao T, Stützle T (2013) Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization. In: Proceedings of CEC 2013. IEEE Press, Piscataway, pp 1938–1944
Lin S, Kernighan B (1973) An effective heuristic algorithm for the traveling salesman problem. Oper Res 21(2):498–516
López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package, iterated race for automatic algorithm configuration. Technical report, TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles. http://iridia.ulb.ac.be/IridiaTrSeries/IridiaTr2011-004.pdf
López-Ibáñez M, Dubois-Lacoste J, Pérez Cáceres L, Stützle T, Birattari M (2016) The irace package: iterated racing for automatic algorithm configuration. Oper Res Perspectives 3: 43–58
Lourenço HR (1995) Job-shop scheduling: computational study of local search and large-step optimization methods. Eur J Oper Res 83(2):347–364
Lourenço HR, Martin O, Stützle T (2002) Iterated local search. In: [38], pp 321–353
Lourenço HR, Martin O, Stützle T (2010) Iterated local search: framework and applications. In: [36], chap 9, pp 363–397
Maniezzo V, Stützle T, Voß S (eds) (2009) Matheuristics—hybridizing metaheuristics and mathematical programming. Annals of information systems, vol 10. Springer, New York
Martin O, Otto SW (1995) Partitioning of unstructured meshes for load balancing. Concurr Pract Exp 7(4):303–314
Martin O, Otto SW (1996) Combining simulated annealing with local search heuristics. Ann Oper Res 63:57–75
Martin O, Otto SW, Felten EW (1991) Large-step Markov chains for the traveling salesman problem. Complex Syst 5(3):299–326
Martin O, Otto SW, Felten EW (1992) Large-step Markov chains for the TSP incorporating local search heuristics. Oper Res Lett 11(4):219–224
Mati Y, Dauzère-Pèrés S, Lahlou C (2011) A general approach for optimizing regular criteria in the job-shop scheduling problem. Eur J Oper Res 212(1):33–42
Melo Silva M, Subramanian A, Ochi LS (2015) An iterated local search heuristic for the split delivery vehicle routing problem. Comput Oper Res 53:234–249
Merz P, Freisleben B (2000) Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans Evol Comput 4(4):337–352
Merz P, Huhse J (2008) An iterated local search approach for finding provably good solutions for very large TSP instances. In: Rudolph G et al (eds) PPSN X. LNCS, vol 5199. Springer, Heidelberg, pp 929–939
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092
Michallet J, Prins C, Yalaoui F, Vitry G (2014) Multi-start iterated local search for the periodic vehicle routing problem with time windows and time spread constraints on services. Comput Oper Res 41:196–207
Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):1097–1100
Morris P (1993) The breakout method for escaping from local minima. In: Proceedings of the 11th National Conference on Artificial Intelligence. AAAI Press/MIT Press, Menlo Park, pp 40–45
Moscato P (1999) Memetic algorithms: a short introduction. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw Hill, London, pp 219–234
Mühlenbein H (1991) Evolution in time and space—the parallel genetic algorithm. In: Rawlins G (ed) Foundations of genetic algorithms (FOGA). Morgan Kaufmann Publishers, San Mateo, pp 316–337
M’Hallah R (2014) An iterated local search variable neighborhood descent hybrid heuristic for the total earliness tardiness permutation flow shop. Int J Prod Res 52(13):3802–3819
Nawaz M, Enscore E Jr, Ham I (1983) A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1):91–95
Nguyen VP, Prins C, Prodhon C (2012) A multi-start iterated local search with tabu list and path relinking for the two-echelon location-routing problem. Eng Appl Artif Intell 25(1): 56–71
Palhazi Cuervo D, Goos P, Sörensen K, Arráiz E (2014) An iterated local search algorithm for the vehicle routing problem with Backhauls. Eur J Oper Res 237(2):454–464
Pan QK, Ruiz R (2012) Local search methods for the flowshop scheduling problem with flowtime minimization. Eur J Oper Res 222(1):31–43
Resende MGC, Ribeiro CC (2010) Greedy randomized adaptive search procedures: advances, hybridizations, and applications. In: [36], pp 283–319
Ribas I, Companys R, Tort-Martorell X (2013) An efficient iterated local search algorithm for the total tardiness blocking flow shop problem. Int J Prod Res 51(17):5238–5252
Ruiz R, Maroto C (2005) A comprehensive review and evaluation of permutation flowshop heuristics. Eur J Oper Res 165(2):479–494
Ruiz R, Stützle T (2007) A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur J Oper Res 177(3):2033–2049
Schreiber GR, Martin O (1999) Cut size statistics of graph bisection heuristics. SIAM J Optim 10(1):231–251
Shaw P (1998) Using constraint programming and local search methods to solve vehicle routing problems. In: Maher M, Puget JF (eds) CP’98. LNCS, vol 1520. Springer, Heidelberg, pp 417–431
Stützle T (1998) Applying iterated local search to the permutation flow shop problem. Technical report AIDA–98–04, FG Intellektik, FB Informatik, TU Darmstadt
Stützle T (1998) Local search algorithms for combinatorial problems—analysis, improvements, and new applications. PhD thesis, FB Informatik, TU Darmstadt
Stützle T (2006) Iterated local search for the quadratic assignment problem. Eur J Oper Res 174(3):1519–1539
Stützle T, Hoos HH (2001) Analysing the run-time behaviour of iterated local search for the travelling salesman problem. In: Hansen P, Ribeiro C (eds) Essays and surveys on metaheuristics. Kluwer Academic Publishers, Boston, pp 589–611
Stützle T, López-Ibáñez M (2015) Automatic (offline) configuration of algorithms. In: Laredo JLJ, Silva S, Esparcia-Alcázar AI (eds) GECCO (Companion). ACM Press, New York, pp 681–702
Stützle T, Birattari M, Hoos HH (eds) (2007). SLS 2007. LNCS, vol 4638. Springer, Heidelberg
Subramanian A, Battarra M, Potts CN (2014) An iterated local search heuristic for the single machine total weighted tardiness scheduling problem with sequence-dependent setup times. Int J Prod Res 52(9):2729–2742
Taillard ÉD (1990) Some efficient heuristic methods for the flow shop sequencing problem. Eur J Oper Res 47(1):65–74
Taillard ÉD (1995) Comparison of iterative searches for the quadratic assignment problem. Locat Sci 3(2):87–105
Thierens D (2004) Population-based iterated local search: restricting the neighborhood search by crossover. In: Deb K et al (eds) GECCO 2004, part II. LNCS, vol 3103. Springer, Heidelberg, pp 234–245
Ulder NLJ, Aarts EHL, Bandelt HJ, van Laarhoven PJM, Pesch E (1991) Genetic local search algorithms for the travelling salesman problem. In: Schwefel HP, Männer R (eds) Proceedings of PPSN-I. LNCS, vol 496. Springer, Heidelberg, pp 109–116
Urlings T, Ruiz R, Stützle T (2010) Shifting representation search for hybrid flexible flowline problems. Eur J Oper Res 207(2):1086–1095
Vaessens RJM, Aarts EHL, Lenstra JK (1998) A local search template. Comput Oper Res 25(11):969–979
Vansteenwegen P, Mateo M (2014) An iterated local search algorithm for the single-vehicle cyclic inventory routing problem. Eur J Oper Res 237(3):802–813
Vansteenwegen P, Souffriau W, Berghe GV, Oudheusden DV (2009) Iterated local search for the team orienteering problem with time windows. Comput Oper Res 36(12):3281–3290
Vaz Penna PH, Subramanian A, Ochi LS (2013) An iterated local search heuristic for the heterogeneous fleet vehicle routing problem. J Heuristics 19(2):201–232
Voudouris C, Tsang EPK (2002) Guided local search. In: [38], pp 185–218
Wolf S, Merz P (2009) Iterated local search for minimum power symmetric connectivity in wireless networks. In: Cotta C, Cowling P (eds) Proceedings of EvoCOP 2009. LNCS, vol 5482. Springer, Heidelberg, pp 192–203
Xu H, Lü Z, Cheng TCE (2014) Iterated local search for single-machine scheduling with sequence-dependent setup times to minimize total weighted tardiness. J Sched 17(3): 271–287
Yang Y, Kreipl S, Pinedo M (2000) Heuristics for minimizing total weighted tardiness in flexible flow shops. J Sched 3(2):89–108
Acknowledgements
This work received support from the COMEX project within the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office. Thomas Stützle acknowledges support from the Belgian F.R.S.-FNRS, of which he is a senior research associate. Rubén Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project “SCHEYARD – Optimization of Scheduling Problems in Container Yards” (No. DPI2015-65895-R) financed by FEDER funds.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this entry
Cite this entry
Stützle, T., Ruiz, R. (2018). Iterated Local Search. In: Martí, R., Pardalos, P., Resende, M. (eds) Handbook of Heuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-07124-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-07124-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07123-7
Online ISBN: 978-3-319-07124-4
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering