Abstract
The Interval Algebra (IA) and a subset of the Region Connection Calculus, namely, RCC-8, are the dominant Artificial Intelligence approaches for representing and reasoning about qualitative temporal and topological relations respectively. Such qualitative information can be formulated as a Qualitative Constraint Network (QCN). In this framework, one of the main tasks is to compute the path consistency of a given QCN. We propose a new algorithm that applies path consistency in a vertex incremental manner. Our algorithm enforces path consistency on an initial path consistent QCN augmented by a new temporal or spatial entity and a new set of constraints, and achieves better performance than the state-of-the-art approach. We evaluate our algorithm experimentally with QCNs of RCC-8 and show the efficiency of our approach.
This work was funded by a PhD grant from Université d’Artois and region Nord-Pas-de-Calais.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allen, J.F.: An Interval-Based Representation of Temporal Knowledge. In: IJCAI (1981)
Allen, J.F.: Maintaining knowledge about temporal intervals. CACM 26, 832–843 (1983)
Bhatt, M., Guesgen, H., Wölfl, S., Hazarika, S.: Qualitative Spatial and Temporal Reasoning: Emerging Applications, Trends, and Directions. Spatial Cognition & Computation 11, 1–14 (2011)
Gerevini, A.: Incremental qualitative temporal reasoning: Algorithms for the point algebra and the ord-horn class. Artif. Intell. 166(1-2), 37–80 (2005)
Huang, J.: Compactness and its implications for qualitative spatial and temporal reasoning. In: KR (2012)
Koubarakis, M., Kyzirakos, K.: Modeling and Querying Metadata in the Semantic Sensor Web: The Model stRDF and the Query Language stSPARQL. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 425–439. Springer, Heidelberg (2010)
Nebel, B.: Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of Using the ORD-Horn Class. In: ECAI (1996)
Open Geospatial Consortium: OGC GeoSPARQL - A geographic query language for RDF data. OGC® Implementation Standard (2012)
Randell, D.A., Cui, Z., Cohn, A.: A Spatial Logic Based on Regions and Connection. In: KR (1992)
Renz, J.: Maximal Tractable Fragments of the Region Connection Calculus: A Complete Analysis. In: IJCAI (1999)
Renz, J., Ligozat, G.: Weak Composition for Qualitative Spatial and Temporal Reasoning. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 534–548. Springer, Heidelberg (2005)
Renz, J., Nebel, B.: Spatial Reasoning with Topological Information. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition 1998. LNCS (LNAI), vol. 1404, pp. 351–371. Springer, Heidelberg (1998)
Renz, J., Nebel, B.: Efficient Methods for Qualitative Spatial Reasoning. JAIR 15, 289–318 (2001)
Renz, J., Nebel, B.: Qualitative Spatial Reasoning Using Constraint Calculi. In: Handbook of Spatial Logics, pp. 161–215 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Sioutis, M., Condotta, JF. (2014). Vertex Incremental Path Consistency for Qualitative Constraint Networks. In: Likas, A., Blekas, K., Kalles, D. (eds) Artificial Intelligence: Methods and Applications. SETN 2014. Lecture Notes in Computer Science(), vol 8445. Springer, Cham. https://doi.org/10.1007/978-3-319-07064-3_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-07064-3_39
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07063-6
Online ISBN: 978-3-319-07064-3
eBook Packages: Computer ScienceComputer Science (R0)