Nothing Special   »   [go: up one dir, main page]

Skip to main content

Vertex Incremental Path Consistency for Qualitative Constraint Networks

  • Conference paper
Artificial Intelligence: Methods and Applications (SETN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8445))

Included in the following conference series:

  • 2781 Accesses

Abstract

The Interval Algebra (IA) and a subset of the Region Connection Calculus, namely, RCC-8, are the dominant Artificial Intelligence approaches for representing and reasoning about qualitative temporal and topological relations respectively. Such qualitative information can be formulated as a Qualitative Constraint Network (QCN). In this framework, one of the main tasks is to compute the path consistency of a given QCN. We propose a new algorithm that applies path consistency in a vertex incremental manner. Our algorithm enforces path consistency on an initial path consistent QCN augmented by a new temporal or spatial entity and a new set of constraints, and achieves better performance than the state-of-the-art approach. We evaluate our algorithm experimentally with QCNs of RCC-8 and show the efficiency of our approach.

This work was funded by a PhD grant from Université d’Artois and region Nord-Pas-de-Calais.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, J.F.: An Interval-Based Representation of Temporal Knowledge. In: IJCAI (1981)

    Google Scholar 

  2. Allen, J.F.: Maintaining knowledge about temporal intervals. CACM 26, 832–843 (1983)

    Article  MATH  Google Scholar 

  3. Bhatt, M., Guesgen, H., Wölfl, S., Hazarika, S.: Qualitative Spatial and Temporal Reasoning: Emerging Applications, Trends, and Directions. Spatial Cognition & Computation 11, 1–14 (2011)

    Article  Google Scholar 

  4. Gerevini, A.: Incremental qualitative temporal reasoning: Algorithms for the point algebra and the ord-horn class. Artif. Intell. 166(1-2), 37–80 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Huang, J.: Compactness and its implications for qualitative spatial and temporal reasoning. In: KR (2012)

    Google Scholar 

  6. Koubarakis, M., Kyzirakos, K.: Modeling and Querying Metadata in the Semantic Sensor Web: The Model stRDF and the Query Language stSPARQL. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 425–439. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Nebel, B.: Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of Using the ORD-Horn Class. In: ECAI (1996)

    Google Scholar 

  8. Open Geospatial Consortium: OGC GeoSPARQL - A geographic query language for RDF data. OGC® Implementation Standard (2012)

    Google Scholar 

  9. Randell, D.A., Cui, Z., Cohn, A.: A Spatial Logic Based on Regions and Connection. In: KR (1992)

    Google Scholar 

  10. Renz, J.: Maximal Tractable Fragments of the Region Connection Calculus: A Complete Analysis. In: IJCAI (1999)

    Google Scholar 

  11. Renz, J., Ligozat, G.: Weak Composition for Qualitative Spatial and Temporal Reasoning. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 534–548. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Renz, J., Nebel, B.: Spatial Reasoning with Topological Information. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition 1998. LNCS (LNAI), vol. 1404, pp. 351–371. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Renz, J., Nebel, B.: Efficient Methods for Qualitative Spatial Reasoning. JAIR 15, 289–318 (2001)

    MATH  MathSciNet  Google Scholar 

  14. Renz, J., Nebel, B.: Qualitative Spatial Reasoning Using Constraint Calculi. In: Handbook of Spatial Logics, pp. 161–215 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sioutis, M., Condotta, JF. (2014). Vertex Incremental Path Consistency for Qualitative Constraint Networks. In: Likas, A., Blekas, K., Kalles, D. (eds) Artificial Intelligence: Methods and Applications. SETN 2014. Lecture Notes in Computer Science(), vol 8445. Springer, Cham. https://doi.org/10.1007/978-3-319-07064-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07064-3_39

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07063-6

  • Online ISBN: 978-3-319-07064-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics