Nothing Special   »   [go: up one dir, main page]

Skip to main content

Proteus: A Hierarchical Portfolio of Solvers and Transformations

  • Conference paper
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2014)

Abstract

In recent years, portfolio approaches to solving SAT problems and CSPs have become increasingly common. There are also a number of different encodings for representing CSPs as SAT instances. In this paper, we leverage advances in both SAT and CSP solving to present a novel hierarchical portfolio-based approach to CSP solving, which we call Proteus, that does not rely purely on CSP solvers. Instead, it may decide that it is best to encode a CSP problem instance into SAT, selecting an appropriate encoding and a corresponding SAT solver. Our experimental evaluation used an instance of Proteus that involved four CSP solvers, three SAT encodings, and six SAT solvers, evaluated on the most challenging problem instances from the CSP solver competitions, involving global and intensional constraints. We show that significant performance improvements can be achieved by Proteus obtained by exploiting alternative view-points and solvers for combinatorial problem-solving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. CSP Solver Competition Benchmarks (2009), http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

  2. Ansótegui, C., Manyà, F.: Mapping Problems with Finite-Domain Variables to Problems with Boolean Variables. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 1–15. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Audemard, G., Simon, L.: Glucose 2.3 in the SAT 2013 Competition. In: Proceedings of SAT Competition 2013, p. 42 (2013)

    Google Scholar 

  4. Biere, A.: Lingeling, Plingeling and Treengeling Entering the SAT Competition 2013. In: Proceedings of SAT Competition 2013 (2013)

    Google Scholar 

  5. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (February 2009)

    Google Scholar 

  6. Een, N., Sörensson, N.: Minisat 2.2 (2013), http://minisat.se

  7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Clasp: A conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Gecode Team: Gecode: Generic Constraint Development Environment (2006), http://www.gecode.org

  9. Gent, I.P.: Arc Consistency in SAT. In: Proceedings of the 15th European Conference on Artificial Intelligence — ECAI 2002, pp. 121–125 (2002)

    Google Scholar 

  10. Gent, I.P., Kotthoff, L., Miguel, I., Nightingale, P.: Machine learning for constraint solver design – a case study for the alldifferent constraint. In: 3rd Workshop on Techniques for Implementing Constraint Programming Systems (TRICS), pp. 13–25 (2010)

    Google Scholar 

  11. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2), 43–62 (2001)

    Article  MathSciNet  Google Scholar 

  12. Haim, S., Walsh, T.: Restart strategy selection using machine learning techniques. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 312–325. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  14. Hebrard, E.: Mistral, A Constraint Satisfaction Library. In: Proceedings of the Third International CSP Solver Competition (2008)

    Google Scholar 

  15. Hebrard, E., O’Mahony, E., O’Sullivan, B.: Constraint Programming and Combinatorial Optimisation in Numberjack. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 181–185. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational problems. Science 275(5296), 51–54 (1997)

    Article  Google Scholar 

  17. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC – Instance-Specific Algorithm Configuration. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 751–756. IOS Press (2010)

    Google Scholar 

  18. Kasif, S.: On the Parallel Complexity of Discrete Relaxation in Constraint Satisfaction Networks. Artificial Intelligence 45(3), 275–286 (1990), http://dx.doi.org/10.1016/0004-37029090009-O

    Article  MathSciNet  Google Scholar 

  19. Kotthoff, L.: LLAMA: leveraging learning to automatically manage algorithms. Tech. Rep. arXiv:1306.1031, arXiv (June 2013), http://arxiv.org/abs/1306.1031

  20. Kotthoff, L.: Algorithm Selection for Combinatorial Search Problems: A Survey. AI Magazine (to appear, 2014)

    Google Scholar 

  21. Le Berre, D., Lynce, I.: CSP2SAT4J: A Simple CSP to SAT Translator. In: Proceedings of the Second International CSP Solver Competition (2008)

    Google Scholar 

  22. Lecoutre, C., Tabary, S.: Abscon 112, Toward more Robustness. In: Proceedings of the Third International CSP Solver Competition (2008)

    Google Scholar 

  23. Manthey, N.: The SAT Solver RISS3G at SC 2013. In: Proceedings of SAT Competition 2013, p. 72 (2013)

    Google Scholar 

  24. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using Case-based Reasoning in an Algorithm Portfolio for Constraint Solving. In: Proceeding of the 19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)

    Google Scholar 

  25. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118 (1976)

    Article  Google Scholar 

  26. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Foundations of Artificial Intelligence. Elsevier, New York (2006)

    MATH  Google Scholar 

  27. Roussel, O., Lecoutre, C.: XML Representation of Constraint Networks: Format XCSP 2.1. CoRR abs/0902.2362 (2009)

    Google Scholar 

  28. Soos, M.: Cryptominisat 2.9.0 (2011)

    Google Scholar 

  29. Tamura, N., Tanjo, T., Banbara, M.: System Description of a SAT-based CSP Solver Sugar. In: Proceedings of the Third International CSP Solver Competition, pp. 71–75 (2009)

    Google Scholar 

  30. Tanjo, T., Tamura, N., Banbara, M.: Azucar: A SAT-Based CSP Solver Using Compact Order Encoding — (Tool Presentation). In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 456–462. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  31. choco team: choco: An Open Source Java Constraint Programming Library (2008)

    Google Scholar 

  32. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)

    Google Scholar 

  33. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hierarchical hardness models for SAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 696–711. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  34. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intelligence Research pp. 565–606 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B. (2014). Proteus: A Hierarchical Portfolio of Solvers and Transformations. In: Simonis, H. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2014. Lecture Notes in Computer Science, vol 8451. Springer, Cham. https://doi.org/10.1007/978-3-319-07046-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07046-9_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07045-2

  • Online ISBN: 978-3-319-07046-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics