Abstract
In recent years, portfolio approaches to solving SAT problems and CSPs have become increasingly common. There are also a number of different encodings for representing CSPs as SAT instances. In this paper, we leverage advances in both SAT and CSP solving to present a novel hierarchical portfolio-based approach to CSP solving, which we call Proteus, that does not rely purely on CSP solvers. Instead, it may decide that it is best to encode a CSP problem instance into SAT, selecting an appropriate encoding and a corresponding SAT solver. Our experimental evaluation used an instance of Proteus that involved four CSP solvers, three SAT encodings, and six SAT solvers, evaluated on the most challenging problem instances from the CSP solver competitions, involving global and intensional constraints. We show that significant performance improvements can be achieved by Proteus obtained by exploiting alternative view-points and solvers for combinatorial problem-solving.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
CSP Solver Competition Benchmarks (2009), http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
Ansótegui, C., Manyà, F.: Mapping Problems with Finite-Domain Variables to Problems with Boolean Variables. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 1–15. Springer, Heidelberg (2005)
Audemard, G., Simon, L.: Glucose 2.3 in the SAT 2013 Competition. In: Proceedings of SAT Competition 2013, p. 42 (2013)
Biere, A.: Lingeling, Plingeling and Treengeling Entering the SAT Competition 2013. In: Proceedings of SAT Competition 2013 (2013)
Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (February 2009)
Een, N., Sörensson, N.: Minisat 2.2 (2013), http://minisat.se
Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Clasp: A conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)
Gecode Team: Gecode: Generic Constraint Development Environment (2006), http://www.gecode.org
Gent, I.P.: Arc Consistency in SAT. In: Proceedings of the 15th European Conference on Artificial Intelligence — ECAI 2002, pp. 121–125 (2002)
Gent, I.P., Kotthoff, L., Miguel, I., Nightingale, P.: Machine learning for constraint solver design – a case study for the alldifferent constraint. In: 3rd Workshop on Techniques for Implementing Constraint Programming Systems (TRICS), pp. 13–25 (2010)
Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2), 43–62 (2001)
Haim, S., Walsh, T.: Restart strategy selection using machine learning techniques. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 312–325. Springer, Heidelberg (2009)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
Hebrard, E.: Mistral, A Constraint Satisfaction Library. In: Proceedings of the Third International CSP Solver Competition (2008)
Hebrard, E., O’Mahony, E., O’Sullivan, B.: Constraint Programming and Combinatorial Optimisation in Numberjack. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 181–185. Springer, Heidelberg (2010)
Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational problems. Science 275(5296), 51–54 (1997)
Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC – Instance-Specific Algorithm Configuration. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) ECAI. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 751–756. IOS Press (2010)
Kasif, S.: On the Parallel Complexity of Discrete Relaxation in Constraint Satisfaction Networks. Artificial Intelligence 45(3), 275–286 (1990), http://dx.doi.org/10.1016/0004-37029090009-O
Kotthoff, L.: LLAMA: leveraging learning to automatically manage algorithms. Tech. Rep. arXiv:1306.1031, arXiv (June 2013), http://arxiv.org/abs/1306.1031
Kotthoff, L.: Algorithm Selection for Combinatorial Search Problems: A Survey. AI Magazine (to appear, 2014)
Le Berre, D., Lynce, I.: CSP2SAT4J: A Simple CSP to SAT Translator. In: Proceedings of the Second International CSP Solver Competition (2008)
Lecoutre, C., Tabary, S.: Abscon 112, Toward more Robustness. In: Proceedings of the Third International CSP Solver Competition (2008)
Manthey, N.: The SAT Solver RISS3G at SC 2013. In: Proceedings of SAT Competition 2013, p. 72 (2013)
O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using Case-based Reasoning in an Algorithm Portfolio for Constraint Solving. In: Proceeding of the 19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)
Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118 (1976)
Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Foundations of Artificial Intelligence. Elsevier, New York (2006)
Roussel, O., Lecoutre, C.: XML Representation of Constraint Networks: Format XCSP 2.1. CoRR abs/0902.2362 (2009)
Soos, M.: Cryptominisat 2.9.0 (2011)
Tamura, N., Tanjo, T., Banbara, M.: System Description of a SAT-based CSP Solver Sugar. In: Proceedings of the Third International CSP Solver Competition, pp. 71–75 (2009)
Tanjo, T., Tamura, N., Banbara, M.: Azucar: A SAT-Based CSP Solver Using Compact Order Encoding — (Tool Presentation). In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 456–462. Springer, Heidelberg (2012)
choco team: choco: An Open Source Java Constraint Programming Library (2008)
Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)
Xu, L., Hoos, H.H., Leyton-Brown, K.: Hierarchical hardness models for SAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 696–711. Springer, Heidelberg (2007)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intelligence Research pp. 565–606 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B. (2014). Proteus: A Hierarchical Portfolio of Solvers and Transformations. In: Simonis, H. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2014. Lecture Notes in Computer Science, vol 8451. Springer, Cham. https://doi.org/10.1007/978-3-319-07046-9_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-07046-9_22
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07045-2
Online ISBN: 978-3-319-07046-9
eBook Packages: Computer ScienceComputer Science (R0)