Nothing Special   »   [go: up one dir, main page]

Skip to main content

New Lower Bounds for the Three-Dimensional Strip Packing Problem

  • Conference paper
  • First Online:
Operations Research Proceedings 2013

Part of the book series: Operations Research Proceedings ((ORP))

  • 1606 Accesses

Abstract

In this paper, we study the three-dimensional strip packing problem (SPP3) which involves packing a set of non-rotatable boxes into a three-dimensional strip (container) of fixed length and width but unconstrained height. The goal is to pack all of the boxes orthogonal oriented and without overlapping into the container, minimising its resulting height. We present new lower bounds derived from different relaxations of the mathematical formulation of the SPP3. Furthermore, we show dominance relations between different bounds and limit the worst case performance ratio of some bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez-Valdés, R., Parreño, F., & Tamarit, J. M. (2009). A branch and bound algorithm for the strip packing problem. OR Spectrum, 31(2), 431–459.

    Article  Google Scholar 

  2. Beasley, J. E. (1985). Bounds for two-dimensional cutting. The Journal of the Operational Research Society, 36(1), 71–74.

    Article  Google Scholar 

  3. Belov, G., Kartak, V. M., Rohling, H., & Scheithauer, G. (2009). One-dimensional relaxations and LP bounds for orthogonal packing. International Transactions in Operational Research, 16(6), 745–766.

    Article  Google Scholar 

  4. Belov G., Scheithauer G. (2011) Gaps between optimal values of some packing and scheduling problems. Technische Universität Dresden.

    Google Scholar 

  5. Boschetti, M. A. (2004). New lower bounds for the three-dimensional finite bin packing problem. Discrete Applied Mathematics, 140(1), 241–258.

    Article  Google Scholar 

  6. Boschetti, M. A., & Mingozzi, A. (2003). The two-dimensional finite bin packing problem. Part I: New lower bounds for the oriented case. 4OR: A Quarterly Journal of Operations Research, 1(1), 27–42.

    Article  Google Scholar 

  7. Boschetti, M. A., & Mingozzi, A. (2003). The two-dimensional finite bin packing problem. Part II: New lower and upper bounds. 4OR: A Quarterly Journal of Operations Research, 1(2), 135–147.

    Article  Google Scholar 

  8. Boschetti, M. A., & Montaletti, L. (2010). An exact algorithm for the two-dimensional strip-packing problem. Operations Research, 58(6), 1774–1791.

    Article  Google Scholar 

  9. Buchwald, T., Hoffmann, K., & Scheithauer, G. (2013). Relations between capacity utilization and minimal bin number. Technical Report, TU Dresden.

    Google Scholar 

  10. Carlier, J., Clautiaux, F., & Moukrim, A. (2007). New reduction procedures and lower bounds for the two-dimensional bin packing problem with fixed orientation. Computers and Operations Research, 34(8), 2223–2250.

    Article  Google Scholar 

  11. Chen, C., Lee, S., & Shen, Q. (1995). An analytical model for the container loading problem. European Journal Of Operational Research, 80(1), 68–76.

    Article  Google Scholar 

  12. Diedrich, F., Harren, R., Jansen, K., Thöle, R., & Thomas, H. (2008). Approximation algorithms for 3D orthogonal Knapsack. Journal of Computer Science and Technology, 23(5), 749–762.

    Article  Google Scholar 

  13. Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of Operational Research, 44(2), 145–159.

    Article  Google Scholar 

  14. Fekete, S. P., & Schepers, J. (2004). A general framework for bounds for higher-dimensional orthogonal packing problems. Mathematical Methods of Operations Research, 60(2), 311–329.

    Article  Google Scholar 

  15. Hoffmann, K. (2012). Das Streifenpackproblem: Untere Schranken und ihre Güte. Masters thesis, TU Dresden.

    Google Scholar 

  16. Kenyon, C., & Rémila, E. (2000). A near-optimal solution to a two-dimensional cutting stock problem. Mathematics of Operations Research, 25(4), 645–656.

    Article  Google Scholar 

  17. Martello, S., Monaci, M., & Vigo, D. (2003). An exact approach to the strip-packing problem. INFORMS Journal on Computing, 15(3), 310–319.

    Article  Google Scholar 

  18. Martello, S., Pisinger, D., & Vigo, D. (2000). The three-dimensional bin packing problem. Operations Research, 48(2), 256–267.

    Article  Google Scholar 

  19. Martello, S., & Toth, P. (1990). Lower bounds and reduction procedures for the bin packing problem. Discrete Applied Mathematics, 28(1), 59–70.

    Article  Google Scholar 

  20. Padberg, M. (2000). Packing small boxes into a big box. Mathematical Methods of Operations Research, 52(1), 1–21.

    Article  Google Scholar 

  21. Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European Journal of Operational Research, 183(3), 1109–1130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hoffmann, K. (2014). New Lower Bounds for the Three-Dimensional Strip Packing Problem. In: Huisman, D., Louwerse, I., Wagelmans, A. (eds) Operations Research Proceedings 2013. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-07001-8_27

Download citation

Publish with us

Policies and ethics