Abstract
Elasticity can be seen as the ability of a system to increase or decrease the computing resources allocated in a dynamic and on demand way. It is an important feature provided by cloud computing, that has been widely used in web applications and is also gaining attention in the scientific community. Considering the possibilities of using elasticity in this context, a question arises: “Are the available public cloud solutions suitable to support elastic scientific applications?” To answer the question, we present a review of some solutions proposed by public cloud providers and point the open issues and challenges in providing elasticity for scientific applications. We also present some initiatives that are being developed in order to overcome the current problems. In our opinion, current computational clouds have not yet reached the necessary maturity level to meet all scientific applications elasticity requirements.
Chapter PDF
Similar content being viewed by others
References
Simmhan, Y., van Ingen, C., Subramanian, G., Li, J.: Bridging the gap between desktop and the cloud for escience applications. In: Proceedings of the 3rd Intl. Conference on Cloud Computing, CLOUD 2010, pp. 474–481. IEEE (2010)
Srirama, S.N., Willmore, C., Ivanitev, V., Jakovits, P.: Desktop to Cloud Migration of Scientific Experiments. In: 2nd International Workshop on Cloud Computing and Scientific Applications, CCSA 2012. IEEE/ACM (2012)
Badger, L., Patt-Corner, R., Voas, J.: Draft cloud computing synopsis and recommendations recommendations of the national institute of standards and technology. Nist Special Publication 146, 84 (2011)
Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, A., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, L., Ionaharia, M.: A View of Cloud Computing. Commun. ACM 53(4) (April 2010)
Wang, L., Zhan, J., Shi, W., Liang, Y.: In cloud, can scientific communities benefit from the economies of scale? IEEE Transactions on Parallel and Distributed Systems 23(2), 296–303 (2012)
Oliveira, D., Baiao, F.A., Mattoso, M.: Migrating Scientific Experiments to the Cloud. HPC in the Cloud
Galante, G., Bona, L.C.E.: A survey on cloud computing elasticity. In: Proceedings of the Intl. Workshop on Clouds and eScience Applications Management, CloudAM 2012. IEEE/ACM (2012)
Chohan, N., Castillo, C., Spreitzer, M., Steinder, M., Tantawi, A., Krintz, C.: See Spot Run: Using Spot Instances for Mapreduce Workflows. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud 2010. USENIX Association (2010)
Amazon Web Services, http://aws.amazon.com/
Rackspace, http://www.rackspace.com/
GoGrid, http://www.gogrid.com/
Joyent, http://joyent.com/
Profitbricks, https://www.profitbricks.com/
RightScale, http://www.rightscale.com/
Caron, E., Rodero-Merino, L.: F. Desprez, A.M.: Auto-scaling, load balancing and monitoring in commercial and open-source clouds. Technical Report 7857. INRIA (2012)
Calheiros, R.N., Vecchiola, C., Karunamoorthy, D., Buyya, R.: The aneka platform and qos-driven resource provisioning for elastic applications on hybrid clouds. Future Generation Computer Systems 28(6), 861–870 (2011)
Google App. Engine, http://code.google.com/appengine
Microsoft Azure, http://www.windowsazure.com/
Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in the cloud. SIGCOMM Comput. Commun. Rev. 41, 45–52 (2011)
Roy, N., Dubey, A., Gokhale, A.: Efficient autoscaling in the cloud using predictive models for workload forecasting. In: Proceedings of the 4th Intl. Conference on Cloud Computing, CLOUD 2011, pp. 500–507. IEEE (2011)
Raveendran, A., Bicer, T., Agrawal, G.: A framework for elastic execution of existing mpi programs. In: Proceedings of the Intl. Symposium on Parallel and Distributed Processing Workshops and PhD Forum, IPDPSW 2011, pp. 940–947. IEEE (2011)
Wang, L., Zhan, J., Shi, W., Liang, Y.: In cloud, can scientific communities benefit from the economies of scale? IEEE Trans. Parallel Distrib. Syst. 23(2), 296–303 (2012)
Costa, R., Brasileiro, F., de Souza Filho, G.L., Sousa, D.M.: Just in Time Clouds: Enabling Highly-Elastic Public Clouds over Low Scale Amortized Resources. Technical report, Federal University of Campina Grande (2010)
Costa, R.,, F.B.: On the amplitude of the elasticity offered by public cloud computing providers. Technical report, Federal University of Campina Grande (2011)
Fitó, J.O., Presa, I.G., Fernández, J.G.: Sla-driven elastic cloud hosting provider. In: Proceedings of the 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, PDP 2010, pp. 111–118. IEEE (2010)
Marshall, P., Keahey, K., Freeman, T.: Elastic site: Using clouds to elastically extend site resources. In: Proceedings of the 10th Intl. Conference on Cluster, Cloud and Grid Computing, pp. 43–52. IEEE (2010)
Islam, S., Lee, K., Fekete, A., Liu, A.: How a consumer can measure elasticity for cloud platforms. Technical Report 680, School of Information Technologies, University of Sydney (2011)
Ben-Yehuda, O.A., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: The Resource-as-a-Service (RaaS) cloud. In: 4th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2011 (2012)
Brebner, P.: Is your cloud elastic enough?: performance modelling the elasticity of infrastructure as a service (iaas) cloud applications. In: Proceedings of the Third Joint WOSP/SIPEW Intl. Conference on Performance Engineering, ICPE 2012, pp. 263–266. ACM (2012)
Mao, M., Humphrey, M.: A performance study on the vm startup time in the cloud. In: Proceedings of the IEEE Fifth Intl. Conference on Cloud Computing, CLOUD 2012, pp. 423–430. IEEE (2012)
Srirama, S.N., Jakovits, P., Vainikko, E.: Adapting scientific computing problems to clouds using mapreduce. Future Generation Computer Systems 28(1), 184–192 (2012)
Iordache, A., Morin, C., Parlavantzas, N., Riteau, P.: Resilin: Elastic MapReduce over Multiple Clouds. Rapport de recherche RR-8081, INRIA (October 2012)
Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)
Bunch, C., Drawert, B., Norman, M.: MapScale: A Cloud Environment for Scientific Computing. Technical report, University of California (June 2009)
Pandey, S., Karunamoorthy, D., Buyya, R.: Workflow Engine for Clouds. In: Buyya, R., Broberg, J., Goscinski, A.M. (eds.) Cloud Computing: Principles and Paradigms, pp. 321–342. John Wiley & Sons, Inc. (March 2011)
Byun, E.K., Kee, Y.S., Kim, J.S., Maeng, S.: Cost Optimized Provisioning of Elastic Resources for Application Workflows. Future Gener. Comput. Syst. 27(8), 1011–1026 (2011)
Shams, K.S., Powell, M.W., Crockett, T.M., Norris, J.S., Rossi, R., Soderstrom, T.: Polyphony: A workflow orchestration framework for cloud computing. In: Proceedings of the 10th IEEE/ACM Intl. Conference on Cluster, Cloud and Grid Computing, CCGRID 2010, pp. 606–611. IEEE (2010)
Vöckler, J., Juve, G., Deelman, E., Rynge, M., Berriman, B.: Experiences using cloud computing for a scientific workflow application. In: Proceedings of the 2nd Intl. Workshop on Scientific Cloud Computing, ScienceCloud 2011, pp. 15–24. ACM (2011)
Kranjc, J., Podpečan, V., Lavrač, N.: ClowdFlows: A cloud based scientific workflow platform. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 816–819. Springer, Heidelberg (2012)
Jha, S., Katz, D.S., Luckow, A., Merzky, A., Stamou, K.: Understanding Scientific Applications for Cloud Environments. In: Buyya, R., Broberg, J., Goscinski, A.M. (eds.) Cloud Computing: Principles and Paradigms, pp. 345–371. John Wiley & Sons, Inc. (March 2011)
Rajan, D., Canino, A., Izaguirre, J.A., Thain, D.: Converting a high performance application to an elastic cloud application. In: Proceedings of the 3rd Intl. Conference on Cloud Computing Technology and Science, CLOUDCOM 2011, pp. 383–390. IEEE (2011)
Galante, G., Bona, L.C.E.: Constructing elastic scientific applications using elasticity primitives. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part V. LNCS, vol. 7975, pp. 281–294. Springer, Heidelberg (2013)
CCIF: The Cloud Computing Interoperability Forum, http://www.cloudforum.org/
IEEE: Cloud Profiles Working Group, http://standards.ieee.org/develop/project/2301.html
Celesti, A., Tusa, F., Villari, M., Puliafito, A.: Three-phase cross-cloud federation model: The cloud sso authentication. In: Proceedings of Second Intl. Conference on Advances in Future Internet, pp. 94–101 (2010)
Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: Utility-oriented federation of cloud computing environments for scaling of application services. In: Hsu, C.-H., Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081, pp. 13–31. Springer, Heidelberg (2010)
Villegas, D., Bobroff, N., Rodero, I., Delgado, J., Liu, Y., Devarakonda, A., Fong, L., Sadjadi, S.M., Parashar, M.: Cloud federation in a layered service model. J. Comput. Syst. Sci. 78(5), 1330–1344 (2012)
Zhu, J., Jiang, Z., Xiao, Z.: Twinkle: A fast resource provisioning mechanism for internet services. In: Proceedings of the 30th IEEE Intl. Conference on Computer Communications, INFOCOM 2011, pp. 802–810. IEEE (2011)
Tang, C.: Fvd: a high-performance virtual machine image format for cloud. In: Proceedings of the 2011 USENIX technical conference, USENIX 2011, p. 18. USENIX Association (2011)
De, P., Gupta, M., Soni, M., Thatte, A.: Caching VM instances for fast VM provisioning: A comparative evaluation. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 325–336. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Galante, G., De Bona, L.C.E., Mury, A.R., Schulze, B. (2014). Are Public Clouds Elastic Enough for Scientific Computing?. In: Lomuscio, A.R., Nepal, S., Patrizi, F., Benatallah, B., Brandić, I. (eds) Service-Oriented Computing – ICSOC 2013 Workshops. ICSOC 2013. Lecture Notes in Computer Science, vol 8377. Springer, Cham. https://doi.org/10.1007/978-3-319-06859-6_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-06859-6_27
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06858-9
Online ISBN: 978-3-319-06859-6
eBook Packages: Computer ScienceComputer Science (R0)