Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Fast Branching Algorithm for Cluster Vertex Deletion

  • Conference paper
Computer Science - Theory and Applications (CSR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8476))

Included in the following conference series:

Abstract

In the family of clustering problems we are given a set of objects (vertices of the graph), together with some observed pairwise similarities (edges). The goal is to identify clusters of similar objects by slightly modifying the graph to obtain a cluster graph (disjoint union of cliques).

Hüffner et al. [LATIN 2008, Theory Comput. Syst. 2010] initiated the parameterized study of Cluster Vertex Deletion, where the allowed modification is vertex deletion, and presented an elegant \(\mathcal{O}(2^k k^9 + nm)\)-time fixed-parameter algorithm, parameterized by the solution size. In the last 5 years, this algorithm remained the fastest known algorithm for Cluster Vertex Deletion and, thanks to its simplicity, became one of the textbook examples of an application of the iterative compression principle. In our work we break the 2k-barrier for Cluster Vertex Deletion and present an \(\mathcal{O}(1.9102^k (n+m))\)-time branching algorithm.

Partially supported by NCN grant N206567140 and Foundation for Polish Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. Journal of Computer and System Sciences 76(7), 524–531 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abu-Khzam, F.N., Fernau, H.: Kernels: Annotated, proper and induced. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 264–275. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Ranking and clustering. Journal of the ACM 55(5), 23:1–23:27 (2008)

    Google Scholar 

  4. Alon, N., Makarychev, K., Makarychev, Y., Naor, A.: Quadratic forms on graphs. In: Proceedings of STOC 2005, pp. 486–493. ACM (2005)

    Google Scholar 

  5. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56, 89–113 (2004)

    Article  MATH  Google Scholar 

  6. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. Journal of Computational Biology 6(3/4), 281–297 (1999)

    Article  Google Scholar 

  7. Böcker, S.: A golden ratio parameterized algorithm for cluster editing. Journal of Discrete Algorithms 16, 79–89 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: Parameterized algorithms for cluster editing. Theoretical Computer Science 410(52), 5467–5480 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: Evaluation and experiments. Algorithmica 60(2), 316–334 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Böcker, S., Damaschke, P.: Even faster parameterized cluster deletion and cluster editing. Information Processing Letters 111(14), 717–721 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bodlaender, H.L., Fellows, M.R., Heggernes, P., Mancini, F., Papadopoulos, C., Rosamond, F.A.: Clustering with partial information. Theoretical Computer Science 411(7-9), 1202–1211 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: Fast branching algorithm for cluster vertex deletion. CoRR, abs/1306.3877 (2013)

    Google Scholar 

  13. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Charikar, M., Wirth, A.: Maximizing quadratic programs: Extending Grothendieck’s inequality. In: Proceedings of FOCS 2004, pp. 54–60. IEEE Computer Society (2004)

    Google Scholar 

  15. Damaschke, P.: Fixed-parameter enumerability of cluster editing and related problems. Theory of Computing Systems 46(2), 261–283 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. Discrete Optimization 8(1), 2–17 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fernau, H.: A top-down approach to search-trees: Improved algorithmics for 3-hitting set. Algorithmica 57(1), 97–118 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in theoretical computer science. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  19. Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds for parameterized complexity of cluster editing. In: Proceedings of STACS 2013. LIPIcs, vol. 20, pp. 32–43. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  20. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. Theory of Computing 2(1), 249–266 (2006)

    Article  MathSciNet  Google Scholar 

  21. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theory of Computing Systems 38(4), 373–392 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Guo, J., Kanj, I.A., Komusiewicz, C., Uhlmann, J.: Editing graphs into disjoint unions of dense clusters. Algorithmica 61(4), 949–970 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: s-plex cluster editing. SIAM Journal of Discrete Mathematics 24(4), 1662–1683 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 711–722. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory of Computing Systems 47(1), 196–217 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Komusiewicz, C.: Parameterized Algorithmics for Network Analysis: Clustering & Querying. PhD thesis, Technische Universität Berlin (2011), http://fpt.akt.tu-berlin.de/publications/diss-komusiewicz.pdf

  28. Komusiewicz, C., Uhlmann, J.: Alternative parameterizations for cluster editing. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 344–355. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized cluster editing problems. Theory of Computing Systems 44(1), 91–104 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32(4), 299–301 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1-2), 173–182 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M. (2014). A Fast Branching Algorithm for Cluster Vertex Deletion. In: Hirsch, E.A., Kuznetsov, S.O., Pin, JÉ., Vereshchagin, N.K. (eds) Computer Science - Theory and Applications. CSR 2014. Lecture Notes in Computer Science, vol 8476. Springer, Cham. https://doi.org/10.1007/978-3-319-06686-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06686-8_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06685-1

  • Online ISBN: 978-3-319-06686-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics