Nothing Special   »   [go: up one dir, main page]

Skip to main content

Characterizing Temporal Anomalies in Evolving Networks

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8443))

Included in the following conference series:

Abstract

Many real world networks evolve over time indicating their dynamic nature to cope up with the changing real life scenarios. Detection of various categories of anomalies, also known as outliers, in graph representation of such network data is essential for discovering different irregular connectivity patterns with potential adverse effects such as intrusions into a computer network. Characterizing the behavior of such anomalies (outliers) during the evolution of the network over time is critical for their mitigation. In this context, a novel method for an effective characterization of network anomalies is proposed here by defining various categories of graph outliers depending on their temporal behavior noticeable across multiple instances of a network during its evolution. The efficacy of the proposed method is demonstrated through an experimental evaluation using various benchmark graph data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akoglu, L., McGlohon, M., Faloutsos, C.: Oddball: Spotting anomalies in weighted graphs. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS, vol. 6119, pp. 410–421. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Anagnostopoulos, A., Kumar, R., Mahdian, M., Upfal, E., Vandin, F.: Algorithms on evolving graphs. In: ACM ITCS, Cambridge, Massachussets, USA, pp. 149–160 (2012)

    Google Scholar 

  3. Chakrabarti, D.: AutoPart: Parameter-free graph partitioning and outlier detection. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 112–124. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Computing Surveys 41(3) (2009)

    Google Scholar 

  5. Ge, Y., Xiong, H., Zhou, Z.H., Ozdemir, H., Yu, J., Lee, K.C.: TOP-EYE: Top-k evolving trajectory outlier detection. In: ACM CIKM, Toronto, Canada, pp. 1733–1736 (2010)

    Google Scholar 

  6. He, W., Hu, G., Zhou, Y.: Large-scale ip network behavior anomaly detection and identification using substructure-based approach and multivariate time series mining. Telecommunication Systems 50(1), 1–13 (2012)

    Google Scholar 

  7. Kim, M., Leskovec, J.: Latent multi-group memebership graph model. In: ICML, Edinburgh, Scotland, UK (2012)

    Google Scholar 

  8. Leskovec, J.: Stanford large network dataset collection (2013), http://snap.stanford.edu/data/index.html

  9. Ley, M.: Dblp - some lessons learned. PVLDB 2(2), 1493–1500 (2009)

    MathSciNet  Google Scholar 

  10. Li, X., Bian, F., Crovella, M., Diot, C., Govindan, R., Iannaccone, G., Lakhina, A.: Detection and identification of network anomalies using sketch subspaces. In: ACM IMC, Rio de Janeiro, Brazil (2006)

    Google Scholar 

  11. Mongiovi, M., Bogdanov, P., Ranca, R., Singh, A.K., Papalexakis, E.E., Faloutsos, C.: Netspot: Spotting significant anomalous regions on dynamic networks. In: SDM, Austin, Texas, pp. 28–36 (2013)

    Google Scholar 

  12. Noble, C.C., Cook, D.J.: Graph-based anomaly detection. In: Proc. SIGKDD, Washington, DC, USA, pp. 631–636 (2003)

    Google Scholar 

  13. Papalexakis, E.E., Akoglu, L., Ienco, D.: Do more views of a graph help? community detection and clustering in multi-graphs. In: Fusion, Istanbul, Turkey, pp. 899–905 (2013)

    Google Scholar 

  14. Rossi, R.A., Neville, J., Gallagher, B., Henderson, K.: Modeling dynamic behavior in large evolving graphs. In: WSDM, Rome, Italy, pp. 667–676 (2013)

    Google Scholar 

  15. Thottan, M., Ji, C.: Anomaly detection in ip networks. IEEE Trans. on Signal Processing 51(8), 2191–2204 (2003)

    Article  Google Scholar 

  16. Wu, L., Wu, X., Lu, A., Zhou, Z.: A spectral approach to detecting subtle anomalies in graphs. Journal of Intelligent Information Systems 41, 313–337 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Suri, N.N.R.R., Murty, M.N., Athithan, G. (2014). Characterizing Temporal Anomalies in Evolving Networks. In: Tseng, V.S., Ho, T.B., Zhou, ZH., Chen, A.L.P., Kao, HY. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2014. Lecture Notes in Computer Science(), vol 8443. Springer, Cham. https://doi.org/10.1007/978-3-319-06608-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06608-0_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06607-3

  • Online ISBN: 978-3-319-06608-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics