Abstract
We introduce some new variants of lattice problems: Quadrant-SVP, Quadrant-CVP and Quadrant-GapCVP’. All of them are NP-hard under deterministic reductions from subset sum problem. These new type of lattice problems have potential in construction of cryptosystems. Moreover, these new variant problems have reductions with standard SVP (shortest vector problem) and CVP (closest vector problem), this feature gives new way to study the complexity of SVP and CVP, especially for the proof of NP-hardness of SVP under deterministic reductions, which is an open problem up to now.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ajtai, M.: The shortest vector problem in l 2 is np-hard for randomized reductions. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 10–19. ACM (1998)
Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, pp. 284–293. ACM (1997)
Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, pp. 601–610. ACM (2001)
Babai On, L.: lovászlattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)
Blömer, J., Naewe, S.: Sampling methods for shortest vectors, closest vectors and successive minima. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 65–77. Springer, Heidelberg (2007)
Cai, J.-Y., Nerurkar, A.: Approximating the svp to within a factor (1+ 1/dim e) is np-hard under randomized reductions. Journal of Computer and System Sciences 59(2), 221–239 (1999)
Gary, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of np-completeness (1979)
Gentry, C.: Fully homomorphic encryption using ideal lattices (2009)
Goldreich, O., Goldwasser, S.: On the limits of non-approximability of lattice problems. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 1–9. ACM (1998)
Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)
Khot, S.: Hardness of approximating the shortest vector problem in lattices. Journal of the ACM (JACM) 52(5), 789–808 (2005)
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 515–534 (1982)
Micciancio, D.: The shortest vector in a lattice is hard to approximate to within some constant. SIAM Journal on Computing 30(6), 2008–2035 (2001)
Micciancio, D.: Inapproximability of the shortest vector problem: Toward a deterministic reduction. Theory of Computing 8(1), 487–512 (2012)
Micciancio, D., Goldwasser, S.: Complexity of lattice problems: a cryptographic perspective, vol. 671. Springer (2002)
Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 351–358. ACM (2010)
Minkowski, H.: Geometrie der zahlen. BG Teubner (1910)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34:1–34:40 (2009)
Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer Science 53(2), 201–224 (1987)
van Emde-Boas, P.: Another NP-complete partition problem and the complexity of computing short vectors in a lattice, Department, Univ. (1981)
Voronoï, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. Journal für die reine und angewandte Mathematik 134, 198–287 (1908)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Li, W. (2014). New Variants of Lattice Problems and Their NP-Hardness. In: Huang, X., Zhou, J. (eds) Information Security Practice and Experience. ISPEC 2014. Lecture Notes in Computer Science, vol 8434. Springer, Cham. https://doi.org/10.1007/978-3-319-06320-1_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-06320-1_37
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06319-5
Online ISBN: 978-3-319-06320-1
eBook Packages: Computer ScienceComputer Science (R0)