Nothing Special   »   [go: up one dir, main page]

Skip to main content

Supply Chain Uncertainty Under ARIMA Demand Process

  • Conference paper
  • First Online:
Business Process Management Workshops (BPM 2013)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 171))

Included in the following conference series:

  • 1682 Accesses

Abstract

This paper discusses a typical supply chain system based on Auto-Regressive Integrated Moving Average (ARIMA) demand process. Minimum Mean Square Error principle and stochastic optimal control theory are introduced to build a new framework for supply chain uncertainty study under general ARIMA demand process. After formulating the order and inventory quantity at time period t, this paper analyzes the optimal order policy as to decrease the bullwhip effect and stock fluctuations under non-stationary demand. The theoretical analysis reveals that a reasonable order quantity can reduce the bullwhip effect generated by demand uncertainty. We also show the negative correlation between the bullwhip effect and inventory stability in the discussed supply chain model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babaia M.Z., Alic M.M., Boylanc J.E., Syntetosd A.A.: Forecasting and inventory performance in a two-stage supply chain with ARIMA (0,1,1) demand: theory and empirical analysis. Int. J. Prod. Econ. http://dx.doi.org/10.1016/j.ijpe.2011.09.004

  2. Balakrishnan, A., Geunes, J., Pangburn, M.S.: Coordinating supply chains by controlling upstream variability propagation. Manuf. Serv. Oper. Manage. 6, 163–183 (2004)

    Google Scholar 

  3. Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control. Holden Day, San Francisco (1970)

    MATH  Google Scholar 

  4. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York (1996)

    MATH  Google Scholar 

  5. Cheng, Y.S., Tang, B.Y., Ling, D.S.: Research on ARMA supply chain model. J. Syst. Eng. Electron. 29, 753–755 (2007)

    MATH  Google Scholar 

  6. Chen, F., Drezner, Z., Ryan, J.K., Simchi-Levi, D.: Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times and information. Manage. Sci. 46, 436–443 (2000)

    Article  MATH  Google Scholar 

  7. Chen, Y.F., Disney, S.M.: The myopic Order-UP-To policy with a proportional feedback controller. Int. J. Prod. Res. 45, 351–368 (2007)

    Article  MATH  Google Scholar 

  8. Dejonckheere, J., Disney, S.M., Lambrecht, M.R., Towill, D.R.: Measuring the bullwhip effect: a control theoretic approach to analyse forecasting induced bullwhip in order-up-to policies. Eur. J. Oper. Res. 147, 567–590 (2003)

    Article  MATH  Google Scholar 

  9. Dejonckheere, J., Disney, S.M., Lambrecht, M.R., Towill, D.R.: The impact of information enrichment on the bullwhip effect in supply chains: a control engineering perspective. Eur. J. Oper. Res. 153, 727–750 (2004)

    Article  MATH  Google Scholar 

  10. Dong, H., Li, Y.P.: Dynamic simulation and optimal control strategy of a decentralized supply chain system. In: ICMSE, Moscow, Russia, pp. 419–424 (2009)

    Google Scholar 

  11. Gaalman, G., Disney, S.M.: State space investigation of the bullwhip problem with ARMA(1,1) demand process. Int. J. Prod. Econ. 104, 327–339 (2006)

    Article  Google Scholar 

  12. Gilbert, K.: An ARIMA supply chain model. Manage. Sci. 51, 305–310 (2005)

    Article  MATH  Google Scholar 

  13. Graves, S.C.: A single-item inventory model for a nonstationary demand process. Manuf. Serv. Oper. Manage. 1, 50–61 (1999)

    Google Scholar 

  14. Hosoda, T., Disney, S.M.: On variance amplification in a three-echelon supply chain with minimum mean square error forecasting. Omega 34, 344–358 (2006)

    Article  Google Scholar 

  15. Hsiao, J.M., Shieh, C.J.: Evaluating the value of information sharing in a supply chain using an ARIMA model. Int. J. Adv. Manuf. Technol. 27, 604–609 (2006)

    Article  Google Scholar 

  16. Lee, H.L., Padmanabhan, V., Whang, S.: Information distortion in a supply chain: the bullwhip effect. Manage. Sci. 43, 546–558 (1997)

    Article  MATH  Google Scholar 

  17. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  18. Petrovic, D., Roy, R., Petrovic, R.: Modelling and simulation of a supply chain in an uncertain environment. Eur. J. Oper. Res. 109, 299–309 (1998)

    Article  MATH  Google Scholar 

  19. Raghunathan, S.: Information sharing in a supply chain: a note on its value when demand is nonstationary. Manage. Sci. 47, 605–610 (2001)

    Article  MATH  Google Scholar 

  20. Xu, H., Rong, G., Feng, Y.P., Wu, Y.C.: Control variance amplification in linear time invariant decentralized supply chains: a minimum variance control perspective. Ind. Eng. Chem. Res. 49, 8644–8656 (2010)

    Article  Google Scholar 

  21. Zhang, X.L.: The impact of forecasting methods on the bullwhip effect. Int. J. Prod. Econ. 88, 15–27 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pan, M., Wu, W. (2014). Supply Chain Uncertainty Under ARIMA Demand Process. In: Lohmann, N., Song, M., Wohed, P. (eds) Business Process Management Workshops. BPM 2013. Lecture Notes in Business Information Processing, vol 171. Springer, Cham. https://doi.org/10.1007/978-3-319-06257-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06257-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06256-3

  • Online ISBN: 978-3-319-06257-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics