Nothing Special   »   [go: up one dir, main page]

Skip to main content

CroSeR: Cross-language Semantic Retrieval of Open Government Data

  • Conference paper
Advances in Information Retrieval (ECIR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8416))

Included in the following conference series:

Abstract

CroSer (Cross-language Semantic Retrieval) is an ir system able to discover links between e-gov services described in different languages. CroSeR supports public administrators to link their own source catalogs of e-gov services described in any language to a target catalog whose services are described in English and are available in the Linked Open Data (lod) cloud. Our system is based on a cross-language semantic matching method that i) translates service labels in English using a machine translation tool, ii) extracts a Wikipedia-based semantic representation from the translated service labels using Explicit Semantic Analysis (esa), iii) evaluates the similarity between two services using their Wikipedia-based representations. The user selects a service in a source catalog and exploits the ranked list of matches suggested by CroSeR to establish a relation (of type narrower, equivalent, or broader match) with other services in the English catalog. The method is independent from the language adopted in the source catalog and it does not assume the availability of information about the services other than very short text descriptions used as service labels. CroSeR is a web application accessible via http://siti-rack.siti.disco.unimib.it:8080/croser/ .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. IJSWIS 5(3), 1–22 (2009)

    Google Scholar 

  2. Ding, L., Peristeras, V., Hausenblas, M.: Linked Open Government Data. IEEE Intelligent Systems 27(3), 11–15 (2012)

    Article  Google Scholar 

  3. Knoth, P., Zilka, L., Zdrahal, Z.: Using Explicit Semantic Analysis for Cross-Lingual Link Discovery. In: 5th Int.l Workshop on Cross Lingual Information Access (2011)

    Google Scholar 

  4. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia Spotlight: Shedding Light on the Web of Documents. In: I-SEMANTICS 2010, pp. 1–8. ACM (2011)

    Google Scholar 

  5. Narducci, F., Palmonari, M., Semeraro, G.: Cross-Language Semantic Retrieval and Linking of E-Gov Services. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 130–145. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Nguyen, D., Overwijk, A., Hauff, C., Trieschnigg, D.R.B., Hiemstra, D., de Jong, F.: WikiTranslate: Query Translation for Cross-Lingual Information Retrieval using only Wikipedia. In: Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G.J.F., Kurimo, M., Mandl, T., Peñas, A., Petras, V. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 58–65. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Shvaiko, P., Euzenat, J.: Ontology Matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

    Article  Google Scholar 

  8. Sorg, P., Cimiano, P.: Exploiting Wikipedia for Cross-lingual and Multilingual Information Retrieval. DKE 74, 26–45 (2012)

    Article  Google Scholar 

  9. Spohr, D., Hollink, L., Cimiano, P.: A Machine Learning approach to Multilingual and Cross-lingual Ontology Matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 665–680. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Narducci, F., Palmonari, M., Semeraro, G. (2014). CroSeR: Cross-language Semantic Retrieval of Open Government Data. In: de Rijke, M., et al. Advances in Information Retrieval. ECIR 2014. Lecture Notes in Computer Science, vol 8416. Springer, Cham. https://doi.org/10.1007/978-3-319-06028-6_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06028-6_98

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06027-9

  • Online ISBN: 978-3-319-06028-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics