Abstract
CroSer (Cross-language Semantic Retrieval) is an ir system able to discover links between e-gov services described in different languages. CroSeR supports public administrators to link their own source catalogs of e-gov services described in any language to a target catalog whose services are described in English and are available in the Linked Open Data (lod) cloud. Our system is based on a cross-language semantic matching method that i) translates service labels in English using a machine translation tool, ii) extracts a Wikipedia-based semantic representation from the translated service labels using Explicit Semantic Analysis (esa), iii) evaluates the similarity between two services using their Wikipedia-based representations. The user selects a service in a source catalog and exploits the ranked list of matches suggested by CroSeR to establish a relation (of type narrower, equivalent, or broader match) with other services in the English catalog. The method is independent from the language adopted in the source catalog and it does not assume the availability of information about the services other than very short text descriptions used as service labels. CroSeR is a web application accessible via http://siti-rack.siti.disco.unimib.it:8080/croser/ .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. IJSWIS 5(3), 1–22 (2009)
Ding, L., Peristeras, V., Hausenblas, M.: Linked Open Government Data. IEEE Intelligent Systems 27(3), 11–15 (2012)
Knoth, P., Zilka, L., Zdrahal, Z.: Using Explicit Semantic Analysis for Cross-Lingual Link Discovery. In: 5th Int.l Workshop on Cross Lingual Information Access (2011)
Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia Spotlight: Shedding Light on the Web of Documents. In: I-SEMANTICS 2010, pp. 1–8. ACM (2011)
Narducci, F., Palmonari, M., Semeraro, G.: Cross-Language Semantic Retrieval and Linking of E-Gov Services. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 130–145. Springer, Heidelberg (2013)
Nguyen, D., Overwijk, A., Hauff, C., Trieschnigg, D.R.B., Hiemstra, D., de Jong, F.: WikiTranslate: Query Translation for Cross-Lingual Information Retrieval using only Wikipedia. In: Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G.J.F., Kurimo, M., Mandl, T., Peñas, A., Petras, V. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 58–65. Springer, Heidelberg (2009)
Shvaiko, P., Euzenat, J.: Ontology Matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)
Sorg, P., Cimiano, P.: Exploiting Wikipedia for Cross-lingual and Multilingual Information Retrieval. DKE 74, 26–45 (2012)
Spohr, D., Hollink, L., Cimiano, P.: A Machine Learning approach to Multilingual and Cross-lingual Ontology Matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 665–680. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Narducci, F., Palmonari, M., Semeraro, G. (2014). CroSeR: Cross-language Semantic Retrieval of Open Government Data. In: de Rijke, M., et al. Advances in Information Retrieval. ECIR 2014. Lecture Notes in Computer Science, vol 8416. Springer, Cham. https://doi.org/10.1007/978-3-319-06028-6_98
Download citation
DOI: https://doi.org/10.1007/978-3-319-06028-6_98
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-06027-9
Online ISBN: 978-3-319-06028-6
eBook Packages: Computer ScienceComputer Science (R0)