Nothing Special   »   [go: up one dir, main page]

Skip to main content

Saliency-Based Applications

  • Chapter
Visual Saliency Computation

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8408))

  • 1647 Accesses

Abstract

This Chapter introduces several saliency-based applications in the fields of computer vision and multimedia analysis. We aim to demonstrate that by simulating the saliency mechanism in human vision system, computer can process visual information as human vision system does and the processing results can better meet human perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. In: ACM SIGGRAPH. ACM, New York (2007), doi:10.1145/1275808.1276390

    Google Scholar 

  • Chalmond, B., Francesconi, B., Herbin, S.: Using hidden scale for salient object detection. IEEE Transactions on Image Processing 15(9), 2644–2656 (2006), doi:10.1109/TIP.2006.877380

    Google Scholar 

  • Chang, C.H., Hsieh, K.Y., Chung, M.C., Wu, J.L.: Visa: Virtual spotlighted advertising. In: Proceedings of the 16th ACM International Conference on Multimedia, MULTIMEDIA 2008, pp. 837–840. ACM, New York (2008), doi:10.1145/1459359.1459500

    Google Scholar 

  • Elazary, L., Itti, L.: Interesting objects are visually salient. Journal of Vision 8(3), 3, 1–15 (2008), doi:10.1167/8.3.3

    Google Scholar 

  • Fu, H., Chi, Z., Feng, D.: Attention-driven image interpretation with application to image retrieval. Pattern Recognition 39(9), 1604–1621 (2006), doi:10.1016/j.patcog.2005.12.015

    Google Scholar 

  • Gao, W., Tian, Y., Huang, T., Yang, Q.: Vlogging: A survey of videoblogging technology on the web. ACM Computing Surveys 42(4), 15, 1–57 (2010), doi:10.1145/1749603.1749606

    Google Scholar 

  • Guo, J., Mei, T., Liu, F., Hua, X.S.: Adon: An intelligent overlay video advertising system. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, pp. 628–629. ACM, New York (2009), doi:10.1145/1571941.1572049

    Google Scholar 

  • Lekakos, G., Papakiriakopoulos, D., Chorianopoulos, K.: An integrated approach to interactive and personalized tv advertising. In: Proceedings of Workshop on Personalization in Future TV (2001)

    Google Scholar 

  • Li, H., Edwards, S.M., Hyun Lee, J.: Measuring the intrusiveness of advertisements: Scale development and validation. Journal of Advertising 31(2), 37–47 (2002)

    Google Scholar 

  • Li, M., Clark, J.: Selective attention in the learning of invariant representation of objects. In: Preceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - Workshops, pp. 93–93 (2005), doi:10.1109/CVPR.2005.522

    Google Scholar 

  • Li, S., Lee, M.C.: Efficient spatiotemporal-attention-driven shot matching. In: Proceedings of the 15th Annual ACM International Conference on Multimedia, MULTIMEDIA 2007, pp. 178–187. ACM, New York (2007), doi:10.1145/1291233.1291275

    Google Scholar 

  • Li, Y., Wan, K.W., Yan, X., Xu, C.: Real time advertisement insertion in baseball video based on advertisement effect. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, MULTIMEDIA 2005, pp. 343–346. ACM, New York (2005), doi:10.1145/1101149.1101221

    Google Scholar 

  • Li, Y., Tian, Y., Yang, J., Duan, L.Y., Gao, W.: Video retargeting with multi-scale trajectory optimization. In: Proceedings of the International Conference on Multimedia Information Retrieval, MIR 2010, pp. 45–54. ACM, New York (2010), doi:10.1145/1743384.1743399

    Google Scholar 

  • Li, Z., Qin, S., Itti, L.: Visual attention guided bit allocation in video compression. Image Vision Computing 29(1), 1–14 (2011), doi:10.1016/j.imavis.2010.07.001

    Google Scholar 

  • López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Visual surveillance by dynamic visual attention method. Pattern Recognition 39(11), 2194–2211 (2006), doi:10.1016/j.patcog.2006.04.018

    Google Scholar 

  • Ma, Y.F., Hua, X.S., Lu, L., Zhang, H.J.: A generic framework of user attention model and its application in video summarization. IEEE Transactions on Multimedia 7(5), 907–919 (2005), doi:10.1109/TMM.2005.854410

    Google Scholar 

  • Mahadevan, V., Vasconcelos, N.: Background subtraction in highly dynamic scenes. In: Preceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–6 (2008), doi:10.1109/CVPR.2008.4587576

    Google Scholar 

  • McCoy, S., Everard, A., Polak, P., Galletta, D.F.: The effects of online advertising. ACM Communication 50(3), 84–88 (2007a), doi:10.1145/1226736.1226740

    Google Scholar 

  • McCoy, S., Everard, A., Polak, P., Galletta, D.F.: Online ad intrusiveness. In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4553, pp. 86–89. Springer, Heidelberg (2007)

    Google Scholar 

  • Mei, T., Hua, X.S., Yang, L., Li, S.: Videosense: Towards effective online video advertising. In: Proceedings of the 15th Annual ACM International Conference on Multimedia, MULTIMEDIA 2007, pp. 1075–1084. ACM, New York (2007), doi:10.1145/1291233.1291467

    Google Scholar 

  • Siagian, C., Itti, L.: Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(2), 300–312 (2007), doi:10.1109/TPAMI.2007.40

    Google Scholar 

  • Thawani, A., Gopalan, S., Sridhar, V.: Context aware personalized ad insertion in an interactive tv environment. In: Proceedings of Workshop on Personalization in Future TV (2004)

    Google Scholar 

  • Wang, J., Fang, Y., Lu, H.: Online video advertising based on user’s attention relavancy computing. In: Preceedings of the IEEE International Conference on Multimedia and Expo, ICME, pp. 1161–1164 (2008), doi:10.1109/ICME.2008.4607646

    Google Scholar 

  • Yang, R., Tian, Y., Huang, T.: Dct-based videoprinting on saliency-consistent regions for detecting video copies with text insertion. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds.) PCM 2009. LNCS, vol. 5879, pp. 797–806. Springer, Heidelberg (2009)

    Google Scholar 

  • Zhu, G., Zheng, Y., Doermann, D., Jaeger, S.: Multi-scale structural saliency for signature detection. In: Preceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–8 (2007), doi:10.1109/CVPR.2007.383255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, J., Gao, W. (2014). Saliency-Based Applications. In: Visual Saliency Computation. Lecture Notes in Computer Science, vol 8408. Springer, Cham. https://doi.org/10.1007/978-3-319-05642-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05642-5_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05641-8

  • Online ISBN: 978-3-319-05642-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics