Abstract
Automatic aorta detection is important for the diagnosis and treatment planning of aortic diseases, such as acute aortic dissection and aneurysm. Manually labeling and tracking the aorta in a large amount of non-contrast CT images are time-consuming and labor-intensive. In this paper, we describe a fully automated method to tackle this problem. We apply General Hough Transom(GHT) to detect the approximately circular shape of the aorta on 2D slices. The k-means clustering algorithm is used to identify two initial points for subsequent vessel tracking. In order to correctly detect the centerline of aorta, the proposed method based on the Bayesian estimation framework incorporates aorta-related prior knowledge. Our approach can handle the variations in the radius along the tubular vessel and the morphological differences of the aortic arch. Initial results on 24 CT datasets from a longitudinal cardiovascular study are encouraging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)
Biesdorf, A., Worz, S., von Tengg-Kobligk, H., Rohr, K.: Automatic detection of supraaortic branches and model-based segmentation of the aortic arch from 3D CTA images. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, ISBI’09, pp. 486–489. IEEE (2009)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)
Florin, C., Paragios, N., Williams, J.: Particle filters, a quasi-monte carlo solution for segmentation of coronaries. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 246–253. Springer, Heidelberg (2005)
Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Applied Statistics) 28(1), 100–108 (1979)
Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M.A., van Ginneken, B.: Multi-atlas-based segmentation with local decision fusion application to cardiac and aortic segmentation in CT scans. IEEE Trans. Med. Imaging 28(7), 1000–1010 (2009)
Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: Medial-based bayesian tracking for vascular segmentation: application to coronary arteries in 3D CT angiography. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008, ISBI 2008, pp. 268–271. IEEE (2008)
Manghat, N.E., Morgan-Hughes, G.J., Marshall, A.J., Roobottom, C.A.: Multi-detector row computed tomography: imaging the coronary arteries. Clin. Radiol. 60(9), 939–952 (2005)
Phalla, O., Bonnet, D., Auriacombe, L., Pedroni, E., Balleux, F., Sidi, D., Mousseaux, E.: Late systemic hypertension and aortic arch geometry after successful repair of coarctation of the aorta. Eur. Heart J. 25(20), 1853–1859 (2004)
Schaap, M., Smal, I., Metz, C.T., van Walsum, T.: Bayesian tracking of elongated structures in 3D images. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 74–85. Springer, Heidelberg (2007)
Zhao, F., Zhang, H., Wahle, A., Scholz, T.D., Sonka, M.: Automated 4D segmentation of aortic magnetic resonance images. In: British Machine Vision Conference (BMVA), vol. 1, pp. 247–256 (2006)
Zheng, Y., John, M., Liao, R., Boese, J., Kirschstein, U., Georgescu, B., Zhou, S.K., Kempfert, J., Walther, T., Brockmann, G., Comaniciu, D.: Automatic aorta segmentation and valve landmark detection in C-arm CT: application to aortic valve implantation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 476–483. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zheng, M., Carr, J.J., Ge, Y. (2014). Automatic Aorta Detection in Non-contrast 3D Cardiac CT Images Using Bayesian Tracking Method. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Tu, Z. (eds) Medical Computer Vision. Large Data in Medical Imaging. MCV 2013. Lecture Notes in Computer Science(), vol 8331. Springer, Cham. https://doi.org/10.1007/978-3-319-05530-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-05530-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05529-9
Online ISBN: 978-3-319-05530-5
eBook Packages: Computer ScienceComputer Science (R0)