Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Aorta Detection in Non-contrast 3D Cardiac CT Images Using Bayesian Tracking Method

  • Conference paper
  • First Online:
Medical Computer Vision. Large Data in Medical Imaging (MCV 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8331))

Included in the following conference series:

Abstract

Automatic aorta detection is important for the diagnosis and treatment planning of aortic diseases, such as acute aortic dissection and aneurysm. Manually labeling and tracking the aorta in a large amount of non-contrast CT images are time-consuming and labor-intensive. In this paper, we describe a fully automated method to tackle this problem. We apply General Hough Transom(GHT) to detect the approximately circular shape of the aorta on 2D slices. The k-means clustering algorithm is used to identify two initial points for subsequent vessel tracking. In order to correctly detect the centerline of aorta, the proposed method based on the Bayesian estimation framework incorporates aorta-related prior knowledge. Our approach can handle the variations in the radius along the tubular vessel and the morphological differences of the aortic arch. Initial results on 24 CT datasets from a longitudinal cardiovascular study are encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  2. Biesdorf, A., Worz, S., von Tengg-Kobligk, H., Rohr, K.: Automatic detection of supraaortic branches and model-based segmentation of the aortic arch from 3D CTA images. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009, ISBI’09, pp. 486–489. IEEE (2009)

    Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  4. Florin, C., Paragios, N., Williams, J.: Particle filters, a quasi-monte carlo solution for segmentation of coronaries. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 246–253. Springer, Heidelberg (2005)

    Google Scholar 

  5. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C (Applied Statistics) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  6. Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M.A., van Ginneken, B.: Multi-atlas-based segmentation with local decision fusion application to cardiac and aortic segmentation in CT scans. IEEE Trans. Med. Imaging 28(7), 1000–1010 (2009)

    Article  Google Scholar 

  7. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: Medial-based bayesian tracking for vascular segmentation: application to coronary arteries in 3D CT angiography. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008, ISBI 2008, pp. 268–271. IEEE (2008)

    Google Scholar 

  8. Manghat, N.E., Morgan-Hughes, G.J., Marshall, A.J., Roobottom, C.A.: Multi-detector row computed tomography: imaging the coronary arteries. Clin. Radiol. 60(9), 939–952 (2005)

    Article  Google Scholar 

  9. Phalla, O., Bonnet, D., Auriacombe, L., Pedroni, E., Balleux, F., Sidi, D., Mousseaux, E.: Late systemic hypertension and aortic arch geometry after successful repair of coarctation of the aorta. Eur. Heart J. 25(20), 1853–1859 (2004)

    Article  Google Scholar 

  10. Schaap, M., Smal, I., Metz, C.T., van Walsum, T.: Bayesian tracking of elongated structures in 3D images. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 74–85. Springer, Heidelberg (2007)

    Google Scholar 

  11. Zhao, F., Zhang, H., Wahle, A., Scholz, T.D., Sonka, M.: Automated 4D segmentation of aortic magnetic resonance images. In: British Machine Vision Conference (BMVA), vol. 1, pp. 247–256 (2006)

    Google Scholar 

  12. Zheng, Y., John, M., Liao, R., Boese, J., Kirschstein, U., Georgescu, B., Zhou, S.K., Kempfert, J., Walther, T., Brockmann, G., Comaniciu, D.: Automatic aorta segmentation and valve landmark detection in C-arm CT: application to aortic valve implantation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 476–483. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingna Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zheng, M., Carr, J.J., Ge, Y. (2014). Automatic Aorta Detection in Non-contrast 3D Cardiac CT Images Using Bayesian Tracking Method. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Tu, Z. (eds) Medical Computer Vision. Large Data in Medical Imaging. MCV 2013. Lecture Notes in Computer Science(), vol 8331. Springer, Cham. https://doi.org/10.1007/978-3-319-05530-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05530-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05529-9

  • Online ISBN: 978-3-319-05530-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics