Abstract
In the paper the problem of minimum energy control of fractional discrete-time linear system with multiple delays in state and control are addressed. General form of solution of the state equation of the system is given and conditions for reachability and minimum energy control are established. The considerations are illustrated by numerical example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Buslowicz, M.: On some properties of the solution of state equation of discrete-time systems with delays. Zesz. Nauk. Polit. Bial., Elektrotechnika (1), 17–29 (1983) (in Polish)
Busłowicz, M., Kaczorek, T.: Reachability and minimum energy control of positive linear discrete-time systems with multiple delays in state and control. Measurement Automation and Monitoring 53(10), 40–45 (2007)
Busłowicz M.: Controllability, reachability and minimum energy control of fractional discrete-time linear systems with multiple delays in state. Bull. Pol. Acad.: Tech. (in print)
Dzieliński, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Scie.: Tech. 58(4), 583–592 (2010)
Guermach, S., Djennoune, S., Bettayeb, M.: Controllability and observability of linear discrete-time fractional-order systems. Int. J. Appl. Math. Comput. Sci. 18(2), 213–222 (2008)
Kaczorek, T., Klamka, J.: Minimum energy control of 2D linear systems with variable coefficients. Int. J. of Control 44(3), 645–650 (1986)
Kaczorek, T.: Vectors and matrices in automatics and electrotechnics. WNT, Warsaw (1998)
Kaczorek, T.: Selected Problems of Fractional Systems Theory. LNCIS, vol. 411. Springer, Heidelberg (2011)
Kaczorek, T.: Minimum energy control of fractional positive continuous-time linear systems. In: Proc. 18th Int. Conference Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 622–626 (2013) (CD-ROM)
Kaczorek, T.: Minimum energy control of fractional positive continuous-time linear systems with bounded inputs. Int. J. Appl. Math. Comput. Sci. (in print)
Kaczorek, T.: An extension of Klamka’s method of minimum energy control to fractional positive discrete-time linear systems with bounded inputs. Bull. Pol. Acad.: Tech. 62(1) (2014) (in print)
Klamka, J.: Relative controllability and minimum energy control of linear systems with distributed delays in control. IEEE Trans. on Automatic Control AC-21(4), 594–595 (1976)
Klamka, J.: Minimum energy control of discrete systems with delays in control. Int. J. Control 26(5), 737–744 (1977)
Klamka, J.: Minimum energy control of 2D systems in Hilbert spaces. Systems Science 9(1-2), 33–42 (1983)
Klamka, J.: Controllability of Dynamical Systems. Kluwer Acad. Publ., Dordrecht (1991)
Klamka, J.: Controllability and minimum energy control problem of infinite dimensional fractional discrete-time systems with delays. In: Proc. First Asian Conference on Intelligent Information and Database Systems, Dong Hoi City, Vietnam, pp. 398–403 (2009)
Klamka, J.: Controllability and minimum energy control problem of fractional discrete-time systems. In: Baleanu, D. (ed.) New Trends in Nanotechnology and Fractional Calculus Applications, pp. 503–509. Springer, New York (2010)
Kociszewski, R.: Controllability and observability of linear time-invariant positive discrete-time systems with delays. PhD Dissertation, Faculty of Electrical Engineering, Bialystok University of Technology, Bialystok (2008) (in Polish)
Luo, Y., Chen, Y.-Q.: Fractional Order Motion Controls. John Wiley & Sons Ltd, Chichester (2013)
Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-order Systems and Controls Fundamentals and Applications. Springer, London (2010)
Mozyrska, D., Pawłuszewicz, E.: Local controllability of nonlinear discrete-time fractional order systems. Bull. Pol. Ac.: Tech. 61(1), 251–256 (2013)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Trzasko, W.: Reachability and controllability of positive fractional discrete-time systems with delay. Journal of Automation, Mobile Robotics & Intelligent Systems 2(3), 43–47 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kociszewski, R. (2014). Minimum Energy Control of Fractional Discrete-Time Linear Systems with Delays in State and Control. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Recent Advances in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-319-05353-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-05353-0_13
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05352-3
Online ISBN: 978-3-319-05353-0
eBook Packages: EngineeringEngineering (R0)