Abstract
The multi-objective optimization methods are traditionally based on Pareto dominance or relaxed forms of dominance in order to achieve a representation of the Pareto front. However, the performance of traditional optimization methods decreases for those problems with more than three objectives to optimize. The decomposition of a multi-objective problem is an approach that transforms a multi-objective problem into many single-objective optimization problems, avoiding the need of any dominance form. This chapter provides a short review of the general framework, current research trends and future research topics on decomposition methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8(1), 101–111 (1960)
Dantzig, G.B., Harvey, R.P., Lansdowne, Zachary F., Robinson, D.W., Maier, S.F.: Formulating and solving the network design problem by decomposition. Transp. Res. Part B: Methodol. 13(1), 5–17 (1979)
Sobieszczanski-Sobieski, J., James, B.B., Dovi, A.R.: Structural optimization by multi level decomposition. AIAA J. 23(11), 1775–1782 (1985)
Ovacik, I.M., Uzsoy, R.: Decomposition Methods for Complex Factory Scheduling Problems. Kluwer Academic Publishers, Boston (1997)
Dorronsoro, B., Danoy, G., Nebro, A.J., Bouvry, P.: Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution. Comput. Oper. Res. 40(6), 1552–1563(2013) (Emergent nature inspired algorithms for multi-objective optimization)
Liu, M., Zou, X., Chen, Y., Wu, Z.: Performance assessment of DMOEA-DD with CEC 2009 MOEA competition test instances. In: IEEE Congress on Evolutionary Computation (CEC 09), pp. 2913–2918 (2009)
Boyd, S., Xiao, L., Mutapcic, A., Mattingley, J.: Notes on decomposition methods. Notes for EE364B, Stanford University (2008)
Abdelouahed, H., Mishra, S.K.: Decomposition methods based on augmented lagrangians: a survey. In: Mishra, S.K. (ed.) Topics in Nonconvex Optimization, Springer Optimization and Its Applications, pp. 175–203. Springer, New York (2011)
Koko, J.: A survey on dual decomposition methods. SeMA J. 62(1), 27–59 (2013)
Palomar, D.P., Chiang, Mung: A tutorial on decomposition methods for network utility maximization. IEEE J. Sel. Areas Commun. 24(8), 1439–1451 (2006)
Sakawa, M., Yano, H.: A fuzzy decomposition method by right-hand-side allocation for large-scale multiobjective nonlinear programming problems. In: Clmaco, J. (ed.) Multicriteria Analysis, pp. 237–246. Springer, Berlin, Heidelberg (1997)
Sefrioui, M., Perlaux, J.: Nash genetic algorithms: examples and applications. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 509–516 (2000)
Zhan, Z.H., Li, J., Cao, J., Zhang, J., Chung, H.S.-H., Shi, Y.-H.: Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems. IEEE Trans. Cybern. 43(2), 445–463 (2013)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation functions: means. Inf. Sci. 181(1), 1–22 (2011)
Zadeh, L.: Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control 8(1), 59–60 (1963)
Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multi. Optim. 26(6), 369–395 (2004)
Sindhya, K., Ruuska, S., Haanp, T., Miettinen, K.: A new hybrid mutation operator for multiobjective optimization with differential evolution. Soft. Comput. 15(10), 2041–2055 (2011)
Athan, T.W., Pa-palambros, P.Y.: A note on weighted criteria methods for compromise solutions in multi-objective optimization. Eng. Optim. 27, 155–176 (1996)
Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained mop test instances. In: IEEE Evolutionary Computation (CEC’09), pp. 203–208 (2009)
Messac, A., Mattson, C.A.: Generating well-distributed sets of Pareto points for engineering design using physical programming. Optim. Eng. 3(4), 431–450 (2002)
Tan, Y.Y., Jiao, Y.C., Li, H., Wang, X.: MOEA/D uniform design: a new version of MOEA/D for optimization problems with many objectives. Comput. Oper. Res. 40(6), 1648−1660 (2013) (emergent nature inspired algorithms for multi-objective optimization)
Hughes, E.J.: Msops-ii: a general-purpose many-objective optimiser. In: IEEE Congress on Evolutionary Computation (CEC 2007), pp. 3944–3951 (2007)
Hughes, E.J.: Multiple single objective Pareto sampling. In: The 2003 Congress on Evolutionary Computation (CEC’03), vol. 4, pp. 2678–2684 (2003)
Hughes, E.J.: Many-objective directed evolutionary line search. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO’11), pp. 761–768. ACM, New York (2011)
Fabre, M.G., Pulido, G.T., Coello, C.A.C.: Alternative fitness assignment methods for many-objective optimization problems. In: Collet, P., Monmarch, N., Legrand, P., Schoenauer, M., Lutton, E. (eds.): Artificial Evolution. Lecture Notes in Computer Science, vol. 5975, pp. 146–157. Springer, Berlin, Heidelberg (2010)
Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 229–242 (2009)
Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 28(3), 392–403 (1998)
Tan, Y.-Y., Jiao, Y.-C., Li, H., Wang, X.-K.: MOEA/D-SQA: a multi-objective memetic algorithm based on decomposition. Eng. Opt. 44(9), 1095–1115 (2012)
Mei, Y., Tang, K., Yao, X.: Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem. IEEE Trans. Evol. Comput. 15(2), 151–165 (2011)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: Proceedings of the 6th International Conference on Parallel Problem Solving from Nature. Lecture Notes in Computer Science, vol. 1917. Springer, Berlin, Heidelberg (2000)
Ke, L., Zhang, Q., Battiti, R.: MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and ant colony. IEEE Trans. Cybern. 43(6), 1845–1859 (2013)
Peng, W., Zhang, Q.: A decomposition-based multi-objective particle swarm optimization algorithm for continuous optimization problems. In: IEEE International Conference on Granular Computing (GrC 2008), pp. 534–537 (2008)
Al Moubayed, N., Petrovski, A., McCall, J.: A novel smart multi-objective particle swarm optimisation using decomposition. In: Schaefer, R., Cotta, C., Koodziej, J., Rudolph, G. (eds.) Parallel Problem Solving from Nature, PPSN XI. Lecture Notes in Computer Science, vol. 6239, pp. 1–10. Springer, Berlin Heidelberg (2010)
Martínez, S.Z., Coello, C.A.C.: A multi-objective particle swarm optimizer based on decomposition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO’11), pp. 69–76. ACM, New York (2011)
Al Moubayed, N, Petrovski, A., McCall, J.: D2MOPSO: multi-objective particle swarm optimizer based on decomposition and dominance. In: Hao, J.-K., Middendorf, M. (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in Computer Science, vol. 7245, pp. 75–86. Springer Berlin Heidelberg (2012)
Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Evolutionary Algorithm Research: A History and Analysis (1998)
Coello, C.A.C.: Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. Front. Comput. Sci. China 3(1), 18–30 (2009)
Hughes, E.: Evolutionary many-objective optimisation: many once or one many? In: The 2005 IEEE Congress on Evolutionary Computation, 2005, vol. 1, pp. 222–227 (2005)
Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multi-dimensional Data, pp. 25–71. Springer, Berlin, Heidelberg (2006)
Durillo, J.J., Nebro, A.J., Coello, C.A.C., Garcia-Nieto, J., Luna, F., Alba, E.: A study of multi-objective metaheuristics when solving parameter scalable problems. IEEE Trans. Evol. Comput. 14(4), 618–635 (2010)
Laumanns, M., Deb, K., Thiele, L., Zitzler, E.: Evolutionary Multiobjective Optimization. Theoretical Advances and Applications. Scalable Test Problems for Evolutionary Multi-Objective Optimization. 105−145 (2005)
Barone, L., Huband, S., Hingston, P., While, L.: A review of multi-objective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 447–506 (2006)
Acknowledgments
B. Dorronsoro acknowledges the support by the National Research Fund, Luxembourg (AFR contract no. 4017742). A. Santiago would like to thank CONACyT Mexico, for the support no. 360199.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Santiago, A. et al. (2014). A Survey of Decomposition Methods for Multi-objective Optimization. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence, vol 547. Springer, Cham. https://doi.org/10.1007/978-3-319-05170-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-05170-3_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05169-7
Online ISBN: 978-3-319-05170-3
eBook Packages: EngineeringEngineering (R0)