Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparative Study of Social Network Structures in PSO

  • Chapter
  • First Online:
Recent Advances on Hybrid Approaches for Designing Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 547))

Abstract

In this chapter a comparative study of social network structures in Particle Swarm Optimization is performed. The social networks employed by the gbest PSO and lbest PSO algorithms are star, ring, Von Neumann and random topologies. Each topology is implemented on four benchmark functions. The objective is knows the performance between each topology with different dimensions. Benchmark functions were used such as Rastrigin, Griewank, Rosenbrock and Sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Procedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE, New York (1995)

    Google Scholar 

  2. Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 303–308. IEEE, New York (1997)

    Google Scholar 

  3. Kennedy, J., EberhartR.C.: Particle swarm optimization. In: Proceedings of the IEEE International Joint Conference on Neuronal Networks, pp. 1942–1948. IEEE Press, New York (1995)

    Google Scholar 

  4. Sombra, A., Valdez, F., Melin, P., Castillo, O.: A new gravitational search algorithm using fuzzy logic to parameter adaptation. In: IEEE Congress on Evolutionary Computation, pp. 1068–1074. IEEE, New York (2013)

    Google Scholar 

  5. Valdez, F., Melin, P., Castillo, O.: An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms. Appl. Sof. Comput. 11(2), 2625–2632 (2011)

    Article  Google Scholar 

  6. Valdez, F., Melin, P., Castillo, O.: Parallel particle swarm optimization with parameters adaptation using fuzzy logic. In: MICAI, vol. 2, pp. 374–385. Springer, Mexico (2012)

    Google Scholar 

  7. Clerc, M., Kennedy, J.: The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  8. Kennedy, J., Spears, W.: Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 78–83. IEEE Press, New York, May 1998

    Google Scholar 

  9. Shi, Y., Eberhart, R.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation 1999, CEC 99. IEEE, Washington (1999)

    Google Scholar 

  10. Valdez, F., Melin, P., Castillo, O.: Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 2114–2119. IEEE, New York (2009)

    Google Scholar 

  11. Vazquez, J.C., Valdez, F., Melin, P.: Fuzzy logic for dynamic adaptation in PSO with multiple topologies. In: IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Joint. Albeta, Canada (2013)

    Google Scholar 

  12. Vazquez, J.C., Valdez, F., Melin, P.: Comparative study of particle swarm optimization variants in complex mathematics functions. In: Recent Advances on Hybrid Intelligent Systems. Springer, Mexico (2013)

    Google Scholar 

  13. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1671–1676. IEEE, Hawaii 2002

    Google Scholar 

  14. Kennedy, J.: Small worlds and megaminds: effects of neighborhood topology on particle swarm performance. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1931–1938. IEEE, Washington D.C. 1999

    Google Scholar 

  15. Shi, Y., Eberhart, R.: Parameter selection in particle swarm optimization. In: Proceedings of Evolutionary Programming 98, pp. 591–600. Springer 1998

    Google Scholar 

  16. Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 101–106. IEEE Press, New York, May 2001

    Google Scholar 

  17. Kennedy, R., Mendes, R., Neighborhood topologies in fully-informed and best-of-neighborhood particle swarms. IEEE Syst. Man Cybern. Soc. 36(4), 515–519 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fevrier Valdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vazquez, J.C., Valdez, F., Melin, P. (2014). Comparative Study of Social Network Structures in PSO. In: Castillo, O., Melin, P., Pedrycz, W., Kacprzyk, J. (eds) Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence, vol 547. Springer, Cham. https://doi.org/10.1007/978-3-319-05170-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05170-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05169-7

  • Online ISBN: 978-3-319-05170-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics