Nothing Special   »   [go: up one dir, main page]

Skip to main content

Verification of Solid State Interlocking Programs

  • Conference paper
  • First Online:
Software Engineering and Formal Methods (SEFM 2013)

Abstract

We report on the inclusion of a formal method into an industrial design process. Concretely, we suggest carrying out a verification step in railway interlocking design between programming the interlocking and testing this program. Safety still relies on testing, but the burden of guaranteeing completeness and correctness of the validation is in this way greatly reduced. We present a complete methodology for carrying out this verification step in the case of ladder logic programs and give results for real world railway interlockings. As this verification step reduces costs for testing, Invensys Rail is working to include such a verification step into their design process of solid state interlockings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdulla, P.A., Deneux, J., Stålmarck, G., Ågren, H., Åkerlund, O.: Designing safe, reliable systems using scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp. 115–129. Springer, Heidelberg (2006)

    Google Scholar 

  2. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: a declarative language for real-time programming. In: Proceedings of POPL’87, pp. 178–188 (1987)

    Google Scholar 

  3. Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D.: Formal verification of a railway interlocking system using model checking. FACS 10(4), 361–380 (1998). Springer

    MATH  Google Scholar 

  4. Claessen, K., Sorensson, N.: New techniques that improve mace-style finite model finding. In: Proceedings of CADE’03 Workshop: Model Computation (2003)

    Google Scholar 

  5. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Meth. Syst. Des. 19(1), 7–34 (2001). Kluwer

    Article  MATH  Google Scholar 

  6. Een, N., Sörensson, N.: Temporal induction by incremental SAT solving. ENTCS 89(4), 543–560 (2003)

    Google Scholar 

  7. Fokkink, W., Hollingshead, P.: Verification of interlockings: from control tables to ladder logic diagrams. In: Proceedings of FMICS’98, pp. 171–185 (1998)

    Google Scholar 

  8. Groote, J., Koorn, J., Van Vlijmen, S.: The safety guaranteeing system at station Hoorn-Kersenboogerd. In: Proceedings of Compass’95, pp. 57–68 (1995)

    Google Scholar 

  9. Han, K., Park, J.: Object-oriented ladder logic development framework based on the unified modeling language. In: Lee, R., Hu, G., Miao, H. (eds.) Computer and Information Science 2009. SCI, vol. 208, pp. 33–45. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Haxthausen, A.: Automated generation of formal safety conditions from railway interlocking tables. STTT. Springer (to appear)

    Google Scholar 

  11. IEC 61131–3 edition 2.0 2003–01. International standard. Programmable controllers. Part 3: Programming languages (January 2003)

    Google Scholar 

  12. James, P.: SAT-based model checking and its applications to train control software. MRes Thesis, Swansea University (2010)

    Google Scholar 

  13. James, P., Roggenbach, M.: Automatically verifying railway interlockings using SAT-based model checking. In: Proceedings of AVoCS’10. Electronic Communications of EASST 35 (2010)

    Google Scholar 

  14. Kanso, K.: Formal verification of ladder logic. MRes Thesis, Swansea University (2009)

    Google Scholar 

  15. Kanso, K.: Agda as a platform for the development of verified railway interlocking systems. Ph.D Thesis, Swansea University (2012)

    Google Scholar 

  16. Kanso, K., Moller, F., Setzer, A.: Automated verification of signalling principles in railway interlocking systems. ENTCS 250, 19–31 (2009)

    Google Scholar 

  17. Kanso, K., Setzer, A.: Specifying railway interlocking systems. In: Proceedings of AVoCS’09, pp. 233–236 (2009)

    Google Scholar 

  18. Kanso, K., Setzer, A.: Integrating automated and interactive theorem proving in type theory. In: Proceedings of AVoCS’10 (2010)

    Google Scholar 

  19. Lawrence, A.: Verification of railway interlockings in SCADE. MRes Thesis, Swansea University (2011)

    Google Scholar 

  20. Lawrence, A., Seisenberger, M.: Verification of railway interlockings in SCADE. In: Proceedings of AVoCS’10 (2010)

    Google Scholar 

  21. Leach, M. (ed.): Railway Control Systems: A Sequel to Railway Signalling. A & C Black, London (1991)

    Google Scholar 

  22. Minisat. http://minisat.se

  23. Rausch, M., Krogh, B.: Formal verification of PLC programs. In: Proceedings of the American Control Conference. IEEE (1998)

    Google Scholar 

  24. Stålmarck, G.: System for determining propositional logic theorems by applying values and rules to triplets that are generated from boolean formula. US patent: 5,276,897 (1994)

    Google Scholar 

  25. The TPTP problem library for automated theorem proving. http://www.cs.miami.edu/tptp/

  26. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Ina Structures in Constructive Mathematics and Mathematical Logic, Steklov Mathematical Institute (1968)

    Google Scholar 

  27. Vincenti, W.G.: What Engineers Know and How They Know It. The Johns Hopkins University Press, Baltimore (1990)

    Google Scholar 

  28. Zoubek, B., Roussel, J.-M., Kwiatkowska, M.: Towards automatic verification of ladder logic programs. In: Proceedings of CESA’03. Springer (2003)

    Google Scholar 

Download references

Acknowledgments

Our thanks go to Ulrich Berger for advice on the semantics of ladder logic formulae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Roggenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

James, P. et al. (2014). Verification of Solid State Interlocking Programs. In: Counsell, S., Núñez, M. (eds) Software Engineering and Formal Methods. SEFM 2013. Lecture Notes in Computer Science(), vol 8368. Springer, Cham. https://doi.org/10.1007/978-3-319-05032-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05032-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05031-7

  • Online ISBN: 978-3-319-05032-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics