Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning Sequential Tree-to-Word Transducers

  • Conference paper
Language and Automata Theory and Applications (LATA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8370))

Abstract

We study the problem of learning sequential top-down tree-to-word transducers (stws). First, we present a Myhill-Nerode characterization of the corresponding class of sequential tree-to-word transformations (\({\mathcal{STW}}\)). Next, we investigate what learning of stws means, identify fundamental obstacles, and propose a learning model with abstain. Finally, we present a polynomial learning algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular expressions for the inference of schemas from XML data. ACM Transactions on the Web 4(4) (2010)

    Google Scholar 

  2. Bex, G.J., Neven, F., Schwentick, T., Vansummeren, S.: Inference of concise regular expressions and DTDs. ACM TODS 35(2) (2010)

    Google Scholar 

  3. Carme, J., Gilleron, R., Lemay, A., Niehren, J.: Interactive learning of node selecting tree transducers. Machine Learning 66(1), 33–67 (2007)

    Article  Google Scholar 

  4. Choffrut, C.: Minimizing subsequential transducers: A survey. TCS 292(1), 131–143 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (October 2007), Available online since 1997: http://tata.gforge.inria.fr

  6. de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recognition 38, 1332–1348 (2005)

    Article  Google Scholar 

  7. Engelfriet, J., Maneth, S., Seidl, H.: Deciding equivalence of top-down XML transformations in polynomial time. Journal of Computer and System Science 75(5), 271–286 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Filiot, E., Raskin, J.-F., Reynier, P.-A., Servais, F., Talbot, J.-M.: Properties of visibly pushdown transducers. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 355–367. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Friese, S., Seidl, H., Maneth, S.: Minimization of deterministic Bottom-Up tree transducers. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 185–196. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Gold, E.M.: Complexity of automaton identification from given data. Inform. Control 37, 302–320 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Griffiths, T.V.: The unsolvability of the equivalence problem for Lambda-Free nondeterministic generalized machines. Journal of the ACM 15(3), 409–413 (1968)

    Article  MATH  Google Scholar 

  12. Laurence, G., Lemay, A., Niehren, J., Staworko, S., Tommasi, M.: Normalization of sequential Top-Down Tree-to-Word transducers. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 354–365. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Lemay, A., Maneth, S., Niehren, J.: A learning algorithm for Top-Down XML transformations. In: 29th PODS 2010, pp. 285–296. ACM Press (2010)

    Google Scholar 

  14. Martens, W., Neven, F., Gyssens, M.: Typechecking top-down XML transformations: Fixed input or output schemas. Inf. Comput. 206(7), 806–827 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Oncina, J., García, P.: Inference of recognizable tree sets. Tech. report, Dept de Sistemas Informáticos y Computación, Univ. de Alicante (1993), DSIC-II/47/93

    Google Scholar 

  16. Oncina, J., Gracia, P.: Identifying regular languages in polynomial time. In: Advances in Structural and Syntactic Pattern Recognition, pp. 99–108 (1992)

    Google Scholar 

  17. Papadimitriou, C.: Computational complexity. Addison-Wesley (1994)

    Google Scholar 

  18. Raskin, J.-F., Servais, F.: Visibly pushdown transducers. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 386–397. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Staworko, S., Laurence, G., Lemay, A., Niehren, J.: Equivalence of deterministic nested word to word transducers. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 310–322. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Staworko, S., Wieczorek, P.: Learning XML twig queries. CoRR, abs/1106.3 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Laurence, G., Lemay, A., Niehren, J., Staworko, S., Tommasi, M. (2014). Learning Sequential Tree-to-Word Transducers. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04921-2_40

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04920-5

  • Online ISBN: 978-3-319-04921-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics