Nothing Special   »   [go: up one dir, main page]

Skip to main content

Satisfiability for MTL and TPTL over Non-monotonic Data Words

  • Conference paper
Language and Automata Theory and Applications (LATA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8370))

Abstract

In the context of real-time systems, Metric Temporal Logic (MTL) and Timed Propositional Temporal Logic (TPTL) are prominent and widely used extensions of Linear Temporal Logic. In this paper, we examine the possibility of using MTL and TPTL to specify properties about classes of non-monotonic data languages over the natural numbers. Words in this class may model the behaviour of, e.g., one-counter machines. We proved, however, that the satisfiability problem for many reasonably expressive fragments of MTL and TPTL is undecidable, and thus the use of these logics is rather limited. On the positive side we prove that satisfiability for the existential fragment of TPTL is NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf. Comput. 104(1), 35–77 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data words. ACM Trans. Comput. Log. 12(4), 27 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bollig, B.: An automaton over data words that captures EMSO logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 171–186. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Bollig, B., Cyriac, A., Gastin, P., Narayan Kumar, K.: Model checking languages of data words. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 391–405. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Bouyer, P.: A logical characterization of data languages. Inf. Process. Lett. 84(2), 75–85 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. Inf. Comput. 208(2), 97–116 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carapelle, C., Feng, S., Fernandez Gil, O., Quaas, K.: Ehrenfeucht-Fraïssé games for TPTL and MTL over data words, http://arxiv.org/abs/1311.6250

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Second Edition, 2nd edn. The MIT Press and McGraw-Hill Book Company (2001)

    Google Scholar 

  10. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Log. 10(3) (2009)

    Google Scholar 

  11. Demri, S., Lazić, R.S., Sangnier, A.: Model checking Freeze LTL over one-counter automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 490–504. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Figueira, D., Segoufin, L.: Future-looking logics on data words and trees. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 331–343. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, R.H.C.: Beyond finite domains. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 86–94. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  14. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. Annals of Mathematics 74(3), 437–455 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ouaknine, J., Worrell, J.B.: On metric temporal logic and faulty Turing machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 217–230. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words. Logical Methods in Computer Science 3(1) (2007)

    Google Scholar 

  17. Quaas, K.: Model checking metric temporal logic over automata with one counter. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 468–479. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Carapelle, C., Feng, S., Fernández Gil, O., Quaas, K. (2014). Satisfiability for MTL and TPTL over Non-monotonic Data Words. In: Dediu, AH., Martín-Vide, C., Sierra-Rodríguez, JL., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2014. Lecture Notes in Computer Science, vol 8370. Springer, Cham. https://doi.org/10.1007/978-3-319-04921-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04921-2_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04920-5

  • Online ISBN: 978-3-319-04921-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics