Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8323))

Abstract

Since their popularity began to rise in the mid-2000s there has been significant growth in the number of multi-core and multi-processor computers available. Knowledge representation systems using logical inference have been slow to embrace this new technology. We present the concept of inference graphs, a natural deduction inference system which scales well on multi-core and multi-processor machines. Inference graphs enhance propositional graphs by treating propositional nodes as tasks which can be scheduled to operate upon messages sent between nodes via the arcs that already exist as part of the propositional graph representation. The use of scheduling heuristics within a prioritized message passing architecture allows inference graphs to perform very well in forward, backward, bi-directional, and focused reasoning. Tests demonstrate the usefulness of our scheduling heuristics, and show significant speedup in both best case and worst case inference scenarios as the number of processors increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baum, L.F.: The Wonderful Wizard of Oz. G. M. Hill (1900)

    Google Scholar 

  2. Choi, J., Shapiro, S.C.: Efficient implementation of non-standard connectives and quantifiers in deductive reasoning systems. In: Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, pp. 381–390. IEEE Computer Society Press, Los Alamitos (1992)

    Chapter  Google Scholar 

  3. Dixon, M., de Kleer, J.: Massively parallel assumption-based truth maintenance. In: Reinfrank, M., Ginsberg, M.L., de Kleer, J., Sandewall, E. (eds.) Non-Monotonic Reasoning 1988. LNCS, vol. 346, pp. 131–142. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  4. Doyle, J.: A truth maintenance system. Artificial Intelligence 19, 231–272 (1979)

    Article  MathSciNet  Google Scholar 

  5. Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence 19, 17–37 (1982)

    Article  Google Scholar 

  6. Hickey, R.: The Clojure programming language. In: Proceedings of the 2008 Symposium on Dynamic Languages. ACM, New York (2008)

    Google Scholar 

  7. Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications: an interactive tutorial. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, SIGMOD 2011, pp. 1213–1216. ACM, New York (2011)

    Google Scholar 

  8. de Kleer, J.: Problem solving with the ATMS. Artificial Intelligence 28(2), 197–224 (1986)

    Article  Google Scholar 

  9. Lehmann, F. (ed.): Semantic Networks in Artificial Intelligence. Pergamon Press, Oxford (1992)

    Google Scholar 

  10. Lendaris, G.G.: Representing conceptual graphs for parallel processing. In: Conceptual Graphs Workshop (1988)

    Google Scholar 

  11. Martins, J.P., Shapiro, S.C.: A model for belief revision. Artificial Intelligence 35, 25–79 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. McAllester, D.: Truth maintenance. In: Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI 1990), Boston, MA, pp. 1109–1116 (1990)

    Google Scholar 

  13. McKay, D.P., Shapiro, S.C.: Using active connection graphs for reasoning with recursive rules. In: Proceedings of the Seventh International Joint Conference on Artificial Intelligence, pp. 368–374. Morgan Kaufmann, Los Altos (1981)

    Google Scholar 

  14. Schlegel, D.R.: Concurrent inference graphs (doctoral consortium abstract). In: Proceedings of the Twenty-Seventh AAAI Conference (AAAI 2013), pp. 1680–1681 (2013)

    Google Scholar 

  15. Schlegel, D.R., Shapiro, S.C.: Visually interacting with a knowledge base using frames, logic, and propositional graphs. In: Croitoru, M., Rudolph, S., Wilson, N., Howse, J., Corby, O. (eds.) GKR 2011. LNCS, vol. 7205, pp. 188–207. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Schlegel, D.R., Shapiro, S.C.: Concurrent reasoning with inference graphs (student abstract). In: Proceedings of the Twenty-Seventh AAAI Conference (AAAI 2013), pp. 1637–1638 (2013)

    Google Scholar 

  17. Shapiro, E.: The family of concurrent logic programming languages. ACM Comput. Surv. 21(3), 413–510 (1989)

    Article  Google Scholar 

  18. Shapiro, S.C.: Set-oriented logical connectives: Syntax and semantics. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010), pp. 593–595. AAAI Press, Menlo Park (2010)

    Google Scholar 

  19. Shapiro, S.C., Martins, J.P., McKay, D.P.: Bi-directional inference. In: Proceedings of the Fourth Annual Conference of the Cognitive Science Society, pp. 90–93. The Program in Cognitive Science of The University of Chicago and The University of Michigan, Ann Arbor, MI (1982)

    Google Scholar 

  20. Shapiro, S.C., Rapaport, W.J.: The SNePS family. Computers & Mathematics with Applications 23(2-5), 243–275 (1992), reprinted in [9, pp. 243–275]

    Google Scholar 

  21. The Joint Task Force on Computing Curricula, Association for Computing Machinery, IEEE-Computer Society: Computer Science Curricula 2013 (2013)

    Google Scholar 

  22. University of Colorodo: Unified verb index (2012), http://verbs.colorado.edu/verb-index/index.php

  23. Wachter, M., Haenni, R.: Propositional DAGs: a new graph-based language for representing boolean functions. In: KR 2006, 10th International Conference on Principles of Knowledge Representation and Reasoning, pp. 277–285. AAAI Press, U.K. (2006)

    Google Scholar 

  24. Yan, F., Xu, N., Qi, Y.: Parallel inference for latent dirichlet allocation on graphics processing units. In: Proceedings of NIPS, pp. 2134–2142 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Schlegel, D.R., Shapiro, S.C. (2014). Concurrent Reasoning with Inference Graphs. In: Croitoru, M., Rudolph, S., Woltran, S., Gonzales, C. (eds) Graph Structures for Knowledge Representation and Reasoning. Lecture Notes in Computer Science(), vol 8323. Springer, Cham. https://doi.org/10.1007/978-3-319-04534-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04534-4_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04533-7

  • Online ISBN: 978-3-319-04534-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics