Abstract
The increasing use of more resource-intensive multimedia applications in communication has made it essential to ensure better utilization of available computing resources. At the same time, energy consumption has turned out to be one of the most important resource constraints in modern systems. Digital videos are an important part of multimedia, and a large number of video standards are currently available. In this paper, we work on the most commonly used video standard named H.264. We propose a method to reduce the energy consumption involved in video decoding by selective degradation of video quality. Experiments on the LIVE video database show that our proposed method is quite effective in practice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahmad, I., Ranka, S.: Handbook of Energy-Aware and Green Computing-Two Volume Set (2012)
Moore, G.E., et al.: Cramming more components onto integrated circuits (1965)
Hennessy, J.L., Patterson, D.A.: Computer architecture: a quantitative approach. Elsevier (2012)
Schwarz, H., Wiegand, T.: The emerging JVT/H.264 video coding standard. In: Proc. of IBC (2002)
Richardson, I.E.: The H. 264 advanced video compression standard. Wiley (2011)
Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H. 264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology 13(7), 560–576 (2003)
Weaver, V.M., Johnson, M., Kasichayanula, K., Ralph, J., Luszczek, P., Terpstra, D., Moore, S.: Measuring energy and power with PAPI. In: 2012 41st International Conference on Parallel Processing Workshops (ICPPW), pp. 262–268. IEEE (2012)
Bertran, R., Gonzalez, M., Martorell, X., Navarro, N., Ayguade, E.: Decomposable and responsive power models for multicore processors using performance counters. In: Proceedings of the 24th ACM International Conference on Supercomputing, pp. 147–158. ACM (2010)
Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? a new look at signal fidelity measures. IEEE Signal Processing Magazine 26(1), 98–117 (2009)
libyuv - yuv scaling and conversion functionality (2013), http://code.google.com/p/libyuv/ (accessed: August 18, 2013)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)
Seshadrinathan, K., Bovik, A.C.: Motion tuned spatio-temporal quality assessment of natural videos. IEEE Transactions on Image Processing 19(2), 335–350 (2010)
Shring, K.: H.264-avc joint model software (2013), http://iphome.hhi.de/suehring/tml/ (accessed: July 8, 2013)
Seshadrinathan, K., Soundararajan, R., Bovik, A.C., Cormack, L.K.: Study of subjective and objective quality assessment of video. IEEE Transactions on Image Processing 19(6), 1427–1441 (2010)
Seshadrinathan, K., Soundararajan, R., Bovik, A.C., Cormack, L.K.: A subjective study to evaluate video quality assessment algorithms. In: IS&T/SPIE Electronic Imaging, pp. 75270H–75270H. International Society for Optics and Photonics (2010)
Live video database (2013), http://live.ece.utexas.edu/research/quality/live_video.html (accessed: August 18, 2013)
Papi (2013), http://icl.cs.utk.edu/papi/software/index.html (accessed: September 4, 2013)
Chang, H.-C., Chen, J.-W., Wu, B.-T., Su, C.-L., Wang, J.-S., Guo, J.-I.: A dynamic quality-adjustable H. 264 video encoder for power-aware video applications. IEEE Transactions on Circuits and Systems for Video Technology 19(12), 1739–1754 (2009)
Nam, H.-M., Jeong, J.-Y., Byun, K.-Y., Kim, J.-O., Ko, S.-J.: A complexity scalable h. 264 decoder with downsizing capability for mobile devices. IEEE Transactions on Consumer Electronics 56(2), 1025–1033 (2010)
Park, S., Lee, Y., Lee, J., Shin, H.: Quality-adaptive requantization for low-energy MPEG-4 video decoding in mobile devices. IEEE Transactions on Consumer Electronics 51(3), 999–1005 (2005)
Huang, Y., Chakraborty, S., Wang, Y.: Using offline bitstream analysis for power-aware video decoding in portable devices. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, pp. 299–302. ACM (2005)
Xu, K., Choy, C.-S.: Low-power bitstream-residual decoder for H. 264/AVC baseline profile decoding. EURASIP Journal on Embedded Systems 2009, 9 (2009)
Bhattacharya, A., Banerjee, A., Sur-Kolay, S., Basu, P., Karmakar, B.: A cache-aware strategy for h.264 decoding on multi-processor architectures. In: VLSI Design and Test XVII (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bhattacharya, A., Banerjee, A., Sur-Kolay, S. (2014). Energy-Aware H.264 Decoding. In: Natarajan, R. (eds) Distributed Computing and Internet Technology. ICDCIT 2014. Lecture Notes in Computer Science, vol 8337. Springer, Cham. https://doi.org/10.1007/978-3-319-04483-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-319-04483-5_21
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-04482-8
Online ISBN: 978-3-319-04483-5
eBook Packages: Computer ScienceComputer Science (R0)