Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning Multiple Multicriteria Additive Models from Heterogeneous Preferences

  • Conference paper
  • First Online:
Algorithmic Decision Theory (ADT 2024)

Abstract

Additive preference representation is standard in Multiple Criteria Decision Analysis, and learning such a preference model dates back from the UTA method [11]. In this seminal work, an additive piece-wise linear model is inferred from a learning set composed of pairwise comparisons. In this setting, the learning set is provided by a single Decision-Maker (DM), and an additive model is inferred to match the learning set. We extend this framework to the case where (i) multiple DMs with heterogeneous preferences provide part of the learning set, and (ii) the learning set is provided as a whole without knowing which DM expressed each pairwise comparison. Hence, the problem amounts to inferring a preference model for each DM and simultaneously “discovering” the segmentation of the learning set. In this paper, we show that this problem is computationally difficult. We propose a mathematical programming based resolution approach to solve this Preference Learning and Segmentation problem (PLS). We also propose a heuristic to deal with large datasets. We study the performance of both algorithms through experiments using synthetic and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Appendices available at github.com/artefactory/learning-heterogeneous-preferences.

  2. 2.

    Appendices available at github.com/artefactory/learning-heterogeneous-preferences.

  3. 3.

    Dataset available at github.com/artefactory/choice-learn.

References

  1. Arthur, D., Vassilvitskii, S., et al.: k-means++: the advantages of careful seeding. In: Soda, vol. 7, pp. 1027–1035 (2007)

    Google Scholar 

  2. Auriau, V., Aouad, A., Désir, A., Malherbe, E.: Choice-learn: large-scale choice modeling for operational contexts through the lens of machine learning. J. Open Sour. Softw. (2024)

    Google Scholar 

  3. Busse, L.M., Orbanz, P., Buhmann, J.M.: Cluster analysis of heterogeneous rank data. In: Proceedings of the 24th International Conference on Machine Learning, pp. 113–120 (2007)

    Google Scholar 

  4. Cascon, J., González-Arteaga, T., de Andres Calle, R.: A new preference classification approach: the \(\lambda \)-dissensus cluster algorithm. Omega 111, 102663 (2022)

    Article  Google Scholar 

  5. Díez, J., del Coz, J.J., Luaces, O., Bahamonde, A.: Clustering people according to their preference criteria. Expert Syst. Appl. 34(2), 1274–1284 (2008)

    Article  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, San Francisco (1979)

    Google Scholar 

  7. Giannopoulos, G., Brefeld, U., Dalamagas, T., Sellis, T.: Learning to rank user intent. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 195–200 (2011)

    Google Scholar 

  8. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)

    Article  Google Scholar 

  9. Gormley, I.C., Murphy, T.B.: Exploring voting blocs within the Irish electorate: a mixture modeling approach. J. Am. Stat. Assoc. 103(483), 1014–1027 (2008)

    Article  MathSciNet  Google Scholar 

  10. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023)

    Google Scholar 

  11. Jacquet-Lagreze, E., Siskos, J.: Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. EJOR 10(2), 151–164 (1982)

    Article  Google Scholar 

  12. Karp, R.: Reducibility among combinatorial problems. Complexity Comput. Comput. 85–104 (1972)

    Google Scholar 

  13. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Trade-Offs. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  14. Krishna, K., Murty, M.N.: Genetic k-means algorithm. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 29(3), 433–439 (1999)

    Google Scholar 

  15. Lefait, G., Kechadi, T.: Customer segmentation architecture based on clustering techniques. In: 2010 Fourth International Conference on Digital Society, pp. 243–248 (2010)

    Google Scholar 

  16. Li, J., Wang, K., Xu, L.: Chameleon based on clustering feature tree and its application in customer segmentation. Ann. Oper. Res. 168(1), 225–245 (2009)

    Article  Google Scholar 

  17. Li, Z., Wang, W., Yang, C., Ragland, D.R.: Bicycle commuting market analysis using attitudinal market segmentation approach. Transp. Res. Part A: Policy Pract. 47, 56–68 (2013)

    Google Scholar 

  18. Liu, A., Moitra, A.: Efficiently learning mixtures of Mallows models. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 627–638 (2018)

    Google Scholar 

  19. Liu, A., Zhao, Z., Liao, C., Lu, P., Xia, L.: Learning Plackett-Luce mixtures from partial preferences. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 4328–4335 (2019)

    Google Scholar 

  20. Liu, J., Wang, Y., Kadziński, M., Mao, X., Rao, Y.: A multiple criteria Bayesian hierarchical model for analyzing heterogeneous consumer preferences. Omega 103113 (2024)

    Google Scholar 

  21. McFadden, D., Train, K.: Mixed MNL models for discrete response. J. Appl. Economet. 15(5), 447–470 (2000)

    Article  Google Scholar 

  22. Mousseau, V., Pirlot, M.: Preference elicitation and learning. EURO J. Decis. Process. 3(1-3) (2015)

    Google Scholar 

  23. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. SIAM (1994)

    Google Scholar 

  24. Siskos, Y., Grigoroudis, E., Matsatsinis, N.F.: UTA methods. In: Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 315–362 (2016)

    Google Scholar 

  25. Tynan, A.C., Drayton, J.: Market segmentation. J. Mark. Manag. 2(3), 301–335 (1987)

    Article  Google Scholar 

  26. Ungar, L.H., Foster, D.P.: Clustering methods for collaborative filtering. In: AAAI Workshop on Recommendation Systems, vol. 1, pp. 114–129. Menlo Park, CA (1998)

    Google Scholar 

  27. Wang, Q., Yang, X., Song, P., Sia, C.L.: Consumer segmentation analysis of multichannel and multistage consumption: a latent class MNL approach. J. Electron. Commer. Res. 15(4), 339 (2014)

    Google Scholar 

  28. Zakrzewska, D., Murlewski, J.: Clustering algorithms for bank customer segmentation. In: 5th International Conference on Intelligent Systems Design and Applications, pp. 197–202 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Auriau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Auriau, V., Belahcène, K., Malherbe, E., Mousseau, V. (2025). Learning Multiple Multicriteria Additive Models from Heterogeneous Preferences. In: Freeman, R., Mattei, N. (eds) Algorithmic Decision Theory. ADT 2024. Lecture Notes in Computer Science(), vol 15248. Springer, Cham. https://doi.org/10.1007/978-3-031-73903-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73903-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73902-6

  • Online ISBN: 978-3-031-73903-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics