Abstract
The data scarcity problem is a crucial factor that hampers the model performance of IMU-based human motion capture. However, effective data augmentation for IMU-based motion capture is challenging, since it has to capture the physical relations and constraints of the human body, while maintaining the data distribution and quality. We propose PoseAugment, a novel pipeline incorporating VAE-based pose generation and physical optimization. Given a pose sequence, the VAE module generates infinite poses with both high fidelity and diversity, while keeping the data distribution. The physical module optimizes poses to satisfy physical constraints with minimal motion restrictions. High-quality IMU data are then synthesized from the augmented poses for training motion capture models. Experiments show that PoseAugment outperforms previous data augmentation and pose generation methods in terms of motion capture accuracy, revealing a strong potential of our method to alleviate the data collection burden for IMU-based motion capture and related tasks driven by human poses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that the raw IMU signals (in device local frames) would first be processed into the global frame before motion capture in practice.
References
Bambade, A., El-Kazdadi, S., Taylor, A., Carpentier, J.: Prox-qp: Yet another quadratic programming solver for robotics and beyond. In: RSS 2022-Robotics: Science and Systems (2022)
Castillo, A., Escobar, M., Jeanneret, G., Pumarola, A., Arbeláez, P., Thabet, A., Sanakoyeu, A.: Bodiffusion: Diffusing sparse observations for full-body human motion synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4221–4231 (2023)
Chen, W.H., Cho, P.C.: A gan-based data augmentation approach for sensor-based human activity recognition. Int’l J. Comp. and Comm. Engr 10(4), 75–84 (2021)
Chen, X., Jiang, B., Liu, W., Huang, Z., Fu, B., Chen, T., Yu, G.: Executing your commands via motion diffusion in latent space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 18000–18010 (2023)
Das, S., Trutoiu, L., Murai, A., Alcindor, D., Oh, M., De la Torre, F., Hodgins, J.: Quantitative measurement of motor symptoms in parkinson’s disease: A study with full-body motion capture data. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 6789–6792. IEEE (2011)
Du, X., Vasudevan, R., Johnson-Roberson, M.: Bio-lstm: A biomechanically inspired recurrent neural network for 3-d pedestrian pose and gait prediction. IEEE Robotics and Automation Letters 4(2), 1501–1508 (2019). https://doi.org/10.1109/LRA.2019.2895266
Du, Y., Kips, R., Pumarola, A., Starke, S., Thabet, A., Sanakoyeu, A.: Avatars grow legs: Generating smooth human motion from sparse tracking inputs with diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 481–490 (2023)
Featherstone, R.: Rigid body dynamics algorithms. Springer (2014)
Felis, M.L.: Rbdl: an efficient rigid-body dynamics library using recursive algorithms. Autonomous Robots pp. 1–17 (2016). https://doi.org/10.1007/s10514-016-9574-0
Gong, K., Zhang, J., Feng, J.: Poseaug: A differentiable pose augmentation framework for 3d human pose estimation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 8575–8584 (2021)
Guo, C., Zou, S., Zuo, X., Wang, S., Ji, W., Li, X., Cheng, L.: Generating diverse and natural 3d human motions from text. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5152–5161 (2022)
Guo, C., Zuo, X., Wang, S., Zou, S., Sun, Q., Deng, A., Gong, M., Cheng, L.: Action2motion: Conditioned generation of 3d human motions. In: Proceedings of the 28th ACM International Conference on Multimedia. pp. 2021–2029 (2020)
Habermann, M., Xu, W., Zollhöfer, M., Pons-Moll, G., Theobalt, C.: Livecap: Real-time human performance capture from monocular video. ACM Trans. Graph. 38(2) (2019). https://doi.org/10.1145/3311970
Henter, G.E., Alexanderson, S., Beskow, J.: Moglow: Probabilistic and controllable motion synthesis using normalising flows. ACM Trans. Graph. 39(6) (nov 2020). https://doi.org/10.1145/3414685.3417836
Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a constrained variational framework. In: International conference on learning representations (2016)
Huang, Y., Kaufmann, M., Aksan, E., Black, M.J., Hilliges, O., Pons-Moll, G.: Deep inertial poser: Learning to reconstruct human pose from sparse inertial measurements in real time. ACM Trans. Graph. 37(6) (dec 2018). https://doi.org/10.1145/3272127.3275108
Inc., M.: Xsens (2024). https://www.movella.com/products/xsens
Iwana, B.K., Uchida, S.: An empirical survey of data augmentation for time series classification with neural networks. PLOS ONE 16(7), 1–32 (07 2021). https://doi.org/10.1371/journal.pone.0254841
Jiang, J., Streli, P., Qiu, H., Fender, A., Laich, L., Snape, P., Holz, C.: Avatarposer: Articulated full-body pose tracking from sparse motion sensing. In: European conference on computer vision. pp. 443–460. Springer (2022)
Jiang, Y., Ye, Y., Gopinath, D., Won, J., Winkler, A.W., Liu, C.K.: Transformer inertial poser: Real-time human motion reconstruction from sparse imus with simultaneous terrain generation. In: SIGGRAPH Asia 2022 Conference Papers. SA ’22, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3550469.3555428
Karunratanakul, K., Preechakul, K., Suwajanakorn, S., Tang, S.: Guided motion diffusion for controllable human motion synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 2151–2162 (October 2023)
Li, Z., Sedlar, J., Carpentier, J., Laptev, I., Mansard, N., Sivic, J.: Estimating 3d motion and forces of person-object interactions from monocular video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019)
Ling, H.Y., Zinno, F., Cheng, G., Van De Panne, M.: Character controllers using motion vaes. ACM Trans. Graph. 39(4) (aug 2020). https://doi.org/10.1145/3386569.3392422
Liu, L., Yin, K., van de Panne, M., Shao, T., Xu, W.: Sampling-based contact-rich motion control. In: ACM SIGGRAPH 2010 Papers. SIGGRAPH ’10, Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1833349.1778865
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: A skinned multi-person linear model. ACM Trans. Graph. 34(6) (oct 2015). https://doi.org/10.1145/2816795.2818013
Maeda, T., Ukita, N.: Motionaug: Augmentation with physical correction for human motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 6427–6436 (June 2022)
Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: Archive of motion capture as surface shapes. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). pp. 5441–5450 (Oct 2019). https://doi.org/10.1109/ICCV.2019.00554
Masoudnia, S., Ebrahimpour, R.: Mixture of experts: a literature survey. Artif. Intell. Rev. 42, 275–293 (2014)
Mehta, D., Sridhar, S., Sotnychenko, O., Rhodin, H., Shafiei, M., Seidel, H.P., Xu, W., Casas, D., Theobalt, C.: Vnect: Real-time 3d human pose estimation with a single rgb camera. ACM Trans. Graph. 36(4) (jul 2017). https://doi.org/10.1145/3072959.3073596
Mollyn, V., Arakawa, R., Goel, M., Harrison, C., Ahuja, K.: Imuposer: Full-body pose estimation using imus in phones, watches, and earbuds. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. CHI ’23, Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3544548.3581392
NaturalPoint, I.: Optitrack (2023). https://optitrack.com
van den Oord, A., Vinyals, O., kavukcuoglu, k.: Neural discrete representation learning. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017), https://proceedings.neurips.cc/paper_files/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
Peng, X.B., Guo, Y., Halper, L., Levine, S., Fidler, S.: Ase: Large-scale reusable adversarial skill embeddings for physically simulated characters. ACM Trans. Graph. 41(4) (jul 2022). https://doi.org/10.1145/3528223.3530110
Petrovich, M., Black, M.J., Varol, G.: Action-conditioned 3d human motion synthesis with transformer vae. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 10985–10995 (October 2021)
Rempe, D., Guibas, L.J., Hertzmann, A., Russell, B., Villegas, R., Yang, J.: Contact and human dynamics from monocular video (2020)
Rogez, G., Schmid, C.: Mocap-guided data augmentation for 3d pose estimation in the wild. Advances in neural information processing systems 29 (2016)
Shi, M., Aberman, K., Aristidou, A., Komura, T., Lischinski, D., Cohen-Or, D., Chen, B.: Motionet: 3d human motion reconstruction from monocular video with skeleton consistency. ACM Trans. Graph. 40(1) (sep 2020). https://doi.org/10.1145/3407659
Shimada, S., Golyanik, V., Xu, W., Theobalt, C.: Physcap: Physically plausible monocular 3d motion capture in real time. ACM Trans. Graph. 39(6) (nov 2020). https://doi.org/10.1145/3414685.3417877
Supej, M.: 3d measurements of alpine skiing with an inertial sensor motion capture suit and gnss rtk system. J. Sports Sci. 28(7), 759–769 (2010)
Tessler, C., Kasten, Y., Guo, Y., Mannor, S., Chechik, G., Peng, X.B.: Calm: Conditional adversarial latent models for directable virtual characters. In: ACM SIGGRAPH 2023 Conference Proceedings. SIGGRAPH ’23, Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3588432.3591541
Tevet, G., Raab, S., Gordon, B., Shafir, Y., Cohen-Or, D., Bermano, A.H.: Human motion diffusion model. arXiv preprint arXiv:2209.14916 (2022)
UK, V.M.S.L.: Vicon (2023). https://www.vicon.com
Von Marcard, T., Rosenhahn, B., Black, M.J., Pons-Moll, G.: Sparse inertial poser: Automatic 3d human pose estimation from sparse imus. In: Computer graphics forum. vol. 36, pp. 349–360. Wiley Online Library (2017)
Wei, X., Chai, J.: Videomocap: Modeling physically realistic human motion from monocular video sequences. In: ACM SIGGRAPH 2010 Papers. SIGGRAPH ’10, Association for Computing Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1833349.1778779
Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X., Xu, H.: Time series data augmentation for deep learning: A survey. pp. 4653–4660 (08 2021). https://doi.org/10.24963/ijcai.2021/631
Won, J., Gopinath, D., Hodgins, J.: Physics-based character controllers using conditional vaes. ACM Trans. Graph. 41(4) (jul 2022). https://doi.org/10.1145/3528223.3530067
Wouwe, T.V., Lee, S., Falisse, A., Delp, S., Liu, C.K.: Diffusion inertial poser: Human motion reconstruction from arbitrary sparse imu configurations (2023)
Xu, X., Gong, J., Brum, C., Liang, L., Suh, B., Gupta, S.K., Agarwal, Y., Lindsey, L., Kang, R., Shahsavari, B., Nguyen, T., Nieto, H., Hudson, S.E., Maalouf, C., Mousavi, J.S., Laput, G.: Enabling hand gesture customization on wrist-worn devices. In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. CHI ’22, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3491102.3501904
Yi, X., Zhou, Y., Habermann, M., Shimada, S., Golyanik, V., Theobalt, C., Xu, F.: Physical inertial poser (pip): Physics-aware real-time human motion tracking from sparse inertial sensors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 13167–13178 (June 2022)
Yi, X., Zhou, Y., Xu, F.: Transpose: Real-time 3d human translation and pose estimation with six inertial sensors. ACM Trans. Graph. 40(4) (jul 2021). https://doi.org/10.1145/3450626.3459786
Yuan, Y., Song, J., Iqbal, U., Vahdat, A., Kautz, J.: Physdiff: Physics-guided human motion diffusion model. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 16010–16021 (October 2023)
Zanfir, A., Marinoiu, E., Sminchisescu, C.: Monocular 3d pose and shape estimation of multiple people in natural scenes: The importance of multiple scene constraints. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2148–2157 (June 2018). https://doi.org/10.1109/CVPR.2018.00229
Zell, P., Wandt, B., Rosenhahn, B.: Joint 3d human motion capture and physical analysis from monocular videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (July 2017)
Zhang, M., Cai, Z., Pan, L., Hong, F., Guo, X., Yang, L., Liu, Z.: Motiondiffuse: Text-driven human motion generation with diffusion model. IEEE Transactions on Pattern Analysis and Machine Intelligence (2024)
Zhao, L., Song, S., Wang, P., Wang, C., Wang, J., Guo, M.: A mlp-mixer and mixture of expert model for remaining useful life prediction of lithium-ion batteries. Front. Comp. Sci. 18(5), 185329 (2024)
Zheng, Y., Yamane, K.: Human motion tracking control with strict contact force constraints for floating-base humanoid robots. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids). pp. 34–41 (Oct 2013). https://doi.org/10.1109/HUMANOIDS.2013.7029952
Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5738–5746 (2019). https://doi.org/10.1109/CVPR.2019.00589
Zou, Y., Yang, J., Ceylan, D., Zhang, J., Perazzi, F., Huang, J.B.: Reducing footskate in human motion reconstruction with ground contact constraints. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (March 2020)
Acknowledgements
This work is supported by the Natural Science Foundation of China under Grant No. 62132010, Beijing Key Lab of Networked Multimedia, Institute for Artificial Intelligence, Tsinghua University (THUAI), Beijing National Research Center for Information Science and Technology (BNRist), 2025 Key Technological Innovation Program of Ningbo City under Grant No.2022Z080, Beijing Municipal Science and Technology Commission, Administrative Commission of Zhongguancun Science Park No.Z221100006722018, and Science and Technology Innovation Key R&D Program of Chongqing.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Z., Yu, C., Liang, C., Shi, Y. (2025). PoseAugment: Generative Human Pose Data Augmentation with Physical Plausibility for IMU-Based Motion Capture. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15090. Springer, Cham. https://doi.org/10.1007/978-3-031-73411-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-73411-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73410-6
Online ISBN: 978-3-031-73411-3
eBook Packages: Computer ScienceComputer Science (R0)