Nothing Special   »   [go: up one dir, main page]

Skip to main content

Probabilistic Weather Forecasting with Deterministic Guidance-Based Diffusion Model

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Weather forecasting requires both deterministic outcomes for immediate decision-making and probabilistic results for assessing uncertainties. However, deterministic models may not fully capture the spectrum of weather possibilities, and probabilistic forecasting can lack the precision needed for specific planning, presenting significant challenges as the field aims for enhance accuracy and reliability. In this paper, we propose the Deterministic Guidance-based Diffusion Model (DGDM) to exploit the benefits of both deterministic and probabilistic weather forecasting models. DGDM integrates a deterministic branch and a diffusion model as a probabilistic branch to improve forecasting accuracy while providing probabilistic forecasting. In addition, we introduce a sequential variance schedule that predicts from the near future to the distant future. Moreover, we present a truncated diffusion by using the result of the deterministic branch to truncate the reverse process of the diffusion model to control uncertainties. We conduct extensive analyses of DGDM on the Moving MNIST. Furthermore, we evaluate the effectiveness of DGDM on the Pacific Northwest Windstorm (PNW)-Typhoon satellite dataset for regional extreme weather forecasting, as well as on the WeatherBench dataset for global weather forecasting dataset. Experimental results show that DGDM achieves state-of-the-art performance not only in global forecasting but also in regional forecasting scenarios. The code is available at: https://github.com/DongGeun-Yoon/DGDM.

D. Yoon and M. Seo—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Lead time: The time interval between the beginning and end of weather forecast.

  2. 2.

    https://nmsc.kma.go.kr/enhome/html/base/cmm/selectPage.do?page=satellite.gk2a.intro.

References

  1. Ayzel, G., Scheffer, T., Heistermann, M.: Rainnet v1. 0: a convolutional neural network for radar-based precipitation nowcasting. Geosci. Model Develop. 13(6), 2631–2644 (2020)

    Google Scholar 

  2. Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R.H., Levine, S.: Stochastic variational video prediction. arXiv preprint arXiv:1710.11252 (2017)

  3. Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Accurate medium-range global weather forecasting with 3d neural networks. Nature 619(7970), 533–538 (2023)

    Article  Google Scholar 

  4. Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., Shelly, A.: Unified modeling and prediction of weather and climate: a 25-year journey. Bull. Am. Meteor. Soc. 93(12), 1865–1877 (2012)

    Article  Google Scholar 

  5. Chatterjee, M., Ahuja, N., Cherian, A.: A hierarchical variational neural uncertainty model for stochastic video prediction. In: ICCV, pp. 9751–9761 (2021)

    Google Scholar 

  6. Dabrowski, J.J., Zhang, Y.F., Rahman, A.: ForecastNet: a time-variant deep feed-forward neural network architecture for multi-step-ahead time-series forecasting. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. LNCS, vol. 12534, pp. 579–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63836-8_48

    Chapter  Google Scholar 

  7. Dee, D.P., et al.: The era-interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc. 137(656), 553–597 (2011)

    Google Scholar 

  8. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: CVPR, pp. 304–311 (2009)

    Google Scholar 

  9. Gao, Z., Tan, C., Wu, L., Li, S.Z.: Simvp: simpler yet better video prediction. In: CVPR, pp. 3170–3180 (2022)

    Google Scholar 

  10. Gao, Z., et al.: Prediff: precipitation nowcasting with latent diffusion models. arXiv preprint arXiv:2307.10422 (2023)

  11. Gruca, A., et al.: Weather4cast at neurips 2022: super-resolution rain movie prediction under spatio-temporal shifts. In: Ciccone, M., Stolovitzky, G., Albrecht, J. (eds.) Proceedings of the NeurIPS 2022 Competitions Track. Proceedings of Machine Learning Research, vol. 220, pp. 292–313. PMLR (2022). https://proceedings.mlr.press/v220/gruca22a.html

  12. Guen, V.L., Thome, N.: Disentangling physical dynamics from unknown factors for unsupervised video prediction. In: CVPR, pp. 11474–11484 (2020)

    Google Scholar 

  13. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models 33, 6840–6851 (2020)

    Google Scholar 

  14. Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M., Fleet, D.J.: Video diffusion models. arXiv:2204.03458 (2022)

  15. Höppe, T., Mehrjou, A., Bauer, S., Nielsen, D., Dittadi, A.: Diffusion models for video prediction and infilling. Trans. Mach. Learn. Res. (2022)

    Google Scholar 

  16. Hu, X., Huang, Z., Huang, A., Xu, J., Zhou, S.: A dynamic multi-scale voxel flow network for video prediction. In: CVPR, pp. 6121–6131 (2023)

    Google Scholar 

  17. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE TPAMI 36(7), 1325–1339 (2013)

    Google Scholar 

  18. Iorio, J., Duffy, P., Govindasamy, B., Thompson, S., Khairoutdinov, M., Randall, D.: Effects of model resolution and subgrid-scale physics on the simulation of precipitation in the continental united states. Clim. Dyn. 23, 243–258 (2004)

    Article  Google Scholar 

  19. Lam, R., et al.: Graphcast: learning skillful medium-range global weather forecasting. arXiv preprint arXiv:2212.12794 (2022)

  20. Leinonen, J., Hamann, U., Nerini, D., Germann, U., Franch, G.: Latent diffusion models for generative precipitation nowcasting with accurate uncertainty quantification. arXiv preprint arXiv:2304.12891 (2023)

  21. Li, B., Xue, K., Liu, B., Lai, Y.K.: BBDM: image-to-image translation with Brownian bridge diffusion models. In: CVPR, pp. 1952–1961 (2023)

    Google Scholar 

  22. Luc, P., et al.: Transformation-based adversarial video prediction on large-scale data. arXiv preprint arXiv:2003.04035 (2020)

  23. Ning, S., et al.: Mimo is all you need: a strong multi-in-multi-out baseline for video prediction. Proc. AAAI Conf. Artif. Intell. 37, 1975–1983 (2023)

    Google Scholar 

  24. Rakhimov, R., Volkhonskiy, D., Artemov, A., Zorin, D., Burnaev, E.: Latent video transformer. arXiv preprint arXiv:2006.10704 (2020)

  25. Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. J. Adv. Model. Earth Syst. 12(11), e2020MS002203 (2020)

    Google Scholar 

  26. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR, pp. 10684–10695 (2022)

    Google Scholar 

  27. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting 28 (2015)

    Google Scholar 

  28. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference on Machine Learning, pp. 843–852. PMLR (2015)

    Google Scholar 

  29. Tan, C., et al.: Temporal attention unit: towards efficient spatiotemporal predictive learning. In: CVPR, pp. 18770–18782 (2023)

    Google Scholar 

  30. Tan, C., et al.: Openstl: a comprehensive benchmark of spatio-temporal predictive learning. In: Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2023)

    Google Scholar 

  31. Trebing, K., Stańczyk, T., Mehrkanoon, S.: Smaat-unet: precipitation nowcasting using a small attention-unet architecture. Pattern Recognit. Lett. 145, 178–186 (2021)

    Google Scholar 

  32. Voleti, V., Jolicoeur-Martineau, A., Pal, C.: MCVD-masked conditional video diffusion for prediction, generation, and interpolation. 35, 23371–23385 (2022)

    Google Scholar 

  33. Wang, Y., Gao, Z., Long, M., Wang, J., Philip, S.Y.: Predrnn++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. In: International Conference on Machine Learning, pp. 5123–5132. PMLR (2018)

    Google Scholar 

  34. Wang, Y., Long, M., Wang, J., Gao, Z., Yu, P.S.: Predrnn: recurrent neural networks for predictive learning using spatiotemporal LSTMs. 30 (2017)

    Google Scholar 

  35. Wang, Y., Zhang, J., Zhu, H., Long, M., Wang, J., Yu, P.S.: Memory in memory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics. In: CVPR, pp. 9154–9162 (2019)

    Google Scholar 

  36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)

    Google Scholar 

  37. Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. Proc. AAAI Conf. Artif. Intell. 31 (2017)

    Google Scholar 

  38. Zhong, Y., Liang, L., Zharkov, I., Neumann, U.: MMVP: motion-matrix-based video prediction. In: ICCV, pp. 4273–4283 (2023)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Institute of Information and communications Technology Planning and Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-2020-II201373, Artificial Intelligence Graduate School Program (Hanyang University)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghyeon Cho .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 762 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoon, D., Seo, M., Kim, D., Choi, Y., Cho, D. (2025). Probabilistic Weather Forecasting with Deterministic Guidance-Based Diffusion Model. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15088. Springer, Cham. https://doi.org/10.1007/978-3-031-73404-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73404-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73403-8

  • Online ISBN: 978-3-031-73404-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics