Abstract
Weather forecasting requires both deterministic outcomes for immediate decision-making and probabilistic results for assessing uncertainties. However, deterministic models may not fully capture the spectrum of weather possibilities, and probabilistic forecasting can lack the precision needed for specific planning, presenting significant challenges as the field aims for enhance accuracy and reliability. In this paper, we propose the Deterministic Guidance-based Diffusion Model (DGDM) to exploit the benefits of both deterministic and probabilistic weather forecasting models. DGDM integrates a deterministic branch and a diffusion model as a probabilistic branch to improve forecasting accuracy while providing probabilistic forecasting. In addition, we introduce a sequential variance schedule that predicts from the near future to the distant future. Moreover, we present a truncated diffusion by using the result of the deterministic branch to truncate the reverse process of the diffusion model to control uncertainties. We conduct extensive analyses of DGDM on the Moving MNIST. Furthermore, we evaluate the effectiveness of DGDM on the Pacific Northwest Windstorm (PNW)-Typhoon satellite dataset for regional extreme weather forecasting, as well as on the WeatherBench dataset for global weather forecasting dataset. Experimental results show that DGDM achieves state-of-the-art performance not only in global forecasting but also in regional forecasting scenarios. The code is available at: https://github.com/DongGeun-Yoon/DGDM.
D. Yoon and M. Seo—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Lead time: The time interval between the beginning and end of weather forecast.
- 2.
References
Ayzel, G., Scheffer, T., Heistermann, M.: Rainnet v1. 0: a convolutional neural network for radar-based precipitation nowcasting. Geosci. Model Develop. 13(6), 2631–2644 (2020)
Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R.H., Levine, S.: Stochastic variational video prediction. arXiv preprint arXiv:1710.11252 (2017)
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., Tian, Q.: Accurate medium-range global weather forecasting with 3d neural networks. Nature 619(7970), 533–538 (2023)
Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., Shelly, A.: Unified modeling and prediction of weather and climate: a 25-year journey. Bull. Am. Meteor. Soc. 93(12), 1865–1877 (2012)
Chatterjee, M., Ahuja, N., Cherian, A.: A hierarchical variational neural uncertainty model for stochastic video prediction. In: ICCV, pp. 9751–9761 (2021)
Dabrowski, J.J., Zhang, Y.F., Rahman, A.: ForecastNet: a time-variant deep feed-forward neural network architecture for multi-step-ahead time-series forecasting. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. LNCS, vol. 12534, pp. 579–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63836-8_48
Dee, D.P., et al.: The era-interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc. 137(656), 553–597 (2011)
Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: CVPR, pp. 304–311 (2009)
Gao, Z., Tan, C., Wu, L., Li, S.Z.: Simvp: simpler yet better video prediction. In: CVPR, pp. 3170–3180 (2022)
Gao, Z., et al.: Prediff: precipitation nowcasting with latent diffusion models. arXiv preprint arXiv:2307.10422 (2023)
Gruca, A., et al.: Weather4cast at neurips 2022: super-resolution rain movie prediction under spatio-temporal shifts. In: Ciccone, M., Stolovitzky, G., Albrecht, J. (eds.) Proceedings of the NeurIPS 2022 Competitions Track. Proceedings of Machine Learning Research, vol. 220, pp. 292–313. PMLR (2022). https://proceedings.mlr.press/v220/gruca22a.html
Guen, V.L., Thome, N.: Disentangling physical dynamics from unknown factors for unsupervised video prediction. In: CVPR, pp. 11474–11484 (2020)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models 33, 6840–6851 (2020)
Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M., Fleet, D.J.: Video diffusion models. arXiv:2204.03458 (2022)
Höppe, T., Mehrjou, A., Bauer, S., Nielsen, D., Dittadi, A.: Diffusion models for video prediction and infilling. Trans. Mach. Learn. Res. (2022)
Hu, X., Huang, Z., Huang, A., Xu, J., Zhou, S.: A dynamic multi-scale voxel flow network for video prediction. In: CVPR, pp. 6121–6131 (2023)
Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE TPAMI 36(7), 1325–1339 (2013)
Iorio, J., Duffy, P., Govindasamy, B., Thompson, S., Khairoutdinov, M., Randall, D.: Effects of model resolution and subgrid-scale physics on the simulation of precipitation in the continental united states. Clim. Dyn. 23, 243–258 (2004)
Lam, R., et al.: Graphcast: learning skillful medium-range global weather forecasting. arXiv preprint arXiv:2212.12794 (2022)
Leinonen, J., Hamann, U., Nerini, D., Germann, U., Franch, G.: Latent diffusion models for generative precipitation nowcasting with accurate uncertainty quantification. arXiv preprint arXiv:2304.12891 (2023)
Li, B., Xue, K., Liu, B., Lai, Y.K.: BBDM: image-to-image translation with Brownian bridge diffusion models. In: CVPR, pp. 1952–1961 (2023)
Luc, P., et al.: Transformation-based adversarial video prediction on large-scale data. arXiv preprint arXiv:2003.04035 (2020)
Ning, S., et al.: Mimo is all you need: a strong multi-in-multi-out baseline for video prediction. Proc. AAAI Conf. Artif. Intell. 37, 1975–1983 (2023)
Rakhimov, R., Volkhonskiy, D., Artemov, A., Zorin, D., Burnaev, E.: Latent video transformer. arXiv preprint arXiv:2006.10704 (2020)
Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: Weatherbench: a benchmark data set for data-driven weather forecasting. J. Adv. Model. Earth Syst. 12(11), e2020MS002203 (2020)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR, pp. 10684–10695 (2022)
Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting 28 (2015)
Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference on Machine Learning, pp. 843–852. PMLR (2015)
Tan, C., et al.: Temporal attention unit: towards efficient spatiotemporal predictive learning. In: CVPR, pp. 18770–18782 (2023)
Tan, C., et al.: Openstl: a comprehensive benchmark of spatio-temporal predictive learning. In: Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2023)
Trebing, K., Stańczyk, T., Mehrkanoon, S.: Smaat-unet: precipitation nowcasting using a small attention-unet architecture. Pattern Recognit. Lett. 145, 178–186 (2021)
Voleti, V., Jolicoeur-Martineau, A., Pal, C.: MCVD-masked conditional video diffusion for prediction, generation, and interpolation. 35, 23371–23385 (2022)
Wang, Y., Gao, Z., Long, M., Wang, J., Philip, S.Y.: Predrnn++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. In: International Conference on Machine Learning, pp. 5123–5132. PMLR (2018)
Wang, Y., Long, M., Wang, J., Gao, Z., Yu, P.S.: Predrnn: recurrent neural networks for predictive learning using spatiotemporal LSTMs. 30 (2017)
Wang, Y., Zhang, J., Zhu, H., Long, M., Wang, J., Yu, P.S.: Memory in memory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics. In: CVPR, pp. 9154–9162 (2019)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)
Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. Proc. AAAI Conf. Artif. Intell. 31 (2017)
Zhong, Y., Liang, L., Zharkov, I., Neumann, U.: MMVP: motion-matrix-based video prediction. In: ICCV, pp. 4273–4283 (2023)
Acknowledgement
This work was supported by Institute of Information and communications Technology Planning and Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-2020-II201373, Artificial Intelligence Graduate School Program (Hanyang University)).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yoon, D., Seo, M., Kim, D., Choi, Y., Cho, D. (2025). Probabilistic Weather Forecasting with Deterministic Guidance-Based Diffusion Model. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15088. Springer, Cham. https://doi.org/10.1007/978-3-031-73404-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-73404-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73403-8
Online ISBN: 978-3-031-73404-5
eBook Packages: Computer ScienceComputer Science (R0)