Abstract
Glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and brain metastases (BM) are three common malignant central nervous system tumors. Accurate preoperative differentiation is essential for appropriate treatment planning and prognosis, however, it’s challenging to differentiate these tumors using MRI due to their similar anatomical structures and imaging characteristics. In this paper, we first construct a new multi-center brain MRI dataset, including 315 training cases (GBM 64, PCNSL 59, BM 192) and 124 external test cases (24:23:77). Moreover, we propose a novel framework FoTNet for accurate diagnosis of the three tumors. Our model achieves a classification accuracy of 92.5% and an average AUC of 0.9754, outperforming previous methods. Our results demonstrates the great potential of AI in assisting physicians in differentiating between GBM, PCNSL, and BM, particularly in resource-limited clinical settings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ostrom, Q.T., et al.: Cbtrus statistical report: primary brain and other central nervous system tumors diagnosed in the united states in 2012–2016. Neuro-oncology 21(Supplement_5), v1–v100 (2019)
Nayak, L., Lee, E.Q., Wen, P.Y.: Epidemiology of brain metastases. Curr. Oncol. Rep. 14, 48–54 (2012)
Ohgaki, H., Kleihues, P.: The definition of primary and secondary glioblastoma. Clin. Cancer Res. 19(4), 764–772 (2013)
Tan, A.C., Ashley, D.M., López, G.Y., Malinzak, M., Friedman, H.S., Khasraw, M.: Management of glioblastoma: state of the art and future directions. CA: a cancer J. Clin. 70(4), 299–312 (2020)
Ostrom, Q.T., et al.: Cbtrus statistical report: primary brain and central nervous system tumors diagnosed in the united states in 2008-2012. Neurooncology 17(suppl_4), iv1–iv62 (2015)
Wirsching, H.G., Weller, M.: Glioblastoma. Malignant Brain Tumors: State-of-the-Art Treatment, pp. 265–288 (2017)
Tabouret, E., Chinot, O., Metellus, P., Tallet, A., Viens, P., Goncalves, A.: Recent trends in epidemiology of brain metastases: an overview. Anticancer Res. 32(11), 4655–4662 (2012)
Barnholtz-Sloan, J.S., Sloan, A.E., Davis, F.G., Vigneau, F.D., Lai, P., Sawaya, R.E.: Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan detroit cancer surveillance system. J. Clin. Oncol. 22(14), 2865–2872 (2004)
Jellinger, K., Radaskiewicz, T., Slowik, F.: Primary malignant lymphomas of the central nervous system in man. In: Malignant Lymphomas of the Nervous System: International Symposium, pp. 95–102. Springer (1975)
Commins, D.L.: Pathology of primary central nervous system lymphoma. Neurosurg. Focus 21(5), 1–10 (2006)
Koeller, K.K., Smirniotopoulos, J.G., Jones, R.V.: Primary central nervous system lymphoma: radiologic-pathologic correlation. Radiographics 17(6), 1497–1526 (1997)
Hochberg, F.H., Miller, D.C.: Primary central nervous system lymphoma. J. Neurosurg. 68(6), 835–853 (1988)
Achrol, A.S., et al.: Brain metastases. Nature Reviews Disease Primers 5(1), 5 (2019)
Batchelor, T., Loeffler, J.S.: Primary cns lymphoma. J. Clin. Oncol. 24(8), 1281–1288 (2006)
McAvoy, M., et al.: Classification of glioblastoma versus primary central nervous system lymphoma using convolutional neural networks. Sci. Rep. 11(1), 15219 (2021)
Bathla, G., et al.: Ai-based classification of three common malignant tumors in neuro-oncology: a multi-institutional comparison of machine learning and deep learning methods. J. Neuroradiol. (2023)
Tariciotti, L., Ferlito, D., Caccavella, V.M., Di Cristofori, A., Fiore, G., Remore, L.G., Giordano, M., Remoli, G., Bertani, G., Borsa, S., et al.: A deep learning model for preoperative differentiation of glioblastoma, brain metastasis, and primary central nervous system lymphoma: An external validation study. NeuroSci 4(1), 18–30 (2022)
Usinskiene, J., et al.: Optimal differentiation of high-and low-grade glioma and metastasis: a meta-analysis of perfusion, diffusion, and spectroscopy metrics. Neuroradiology 58, 339–350 (2016)
Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 510–519 (2019)
Qin, Z., Zhang, P., Wu, F., Li, X.: Fcanet: frequency channel attention networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 783–792 (2021)
Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100(1), 90–93 (1974)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Tan, M., Le, Q.: Efficientnetv2: smaller models and faster training. In: International Conference on Machine Learning, pp. 10096–10106. PMLR (2021)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)
Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10428–10436 (2020)
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A., Li, Y.: Maxvit: Multi-axis vision transformer. In: European conference on computer vision. pp. 459–479. Springer (2022)
Omeiza, D., Speakman, S., Cintas, C., Weldermariam, K.: Smooth grad-cam++: an enhanced inference level visualization technique for deep convolutional neural network models. arXiv preprint arXiv:1908.01224 (2019)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant No. 62106222), the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ23F020008), the Foundation of medical and health technology of Zhejiang province, China (2023RC189) and the Zhejiang University-Angelalign Inc. R&D Center for Intelligent Healthcare.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no relevant conflicts of interest to disclose.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hong, C., Wang, H., Wu, Z., Liu, Z., Lv, J. (2025). FoTNet Enables Preoperative Differentiation of Malignant Brain Tumors with Deep Learning. In: Ali, S., van der Sommen, F., Papież, B.W., Ghatwary, N., Jin, Y., Kolenbrander, I. (eds) Cancer Prevention, Detection, and Intervention. CaPTion 2024. Lecture Notes in Computer Science, vol 15199. Springer, Cham. https://doi.org/10.1007/978-3-031-73376-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-73376-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73375-8
Online ISBN: 978-3-031-73376-5
eBook Packages: Computer ScienceComputer Science (R0)