Nothing Special   »   [go: up one dir, main page]

Skip to main content

Benchmarking Dependence Measures to Prevent Shortcut Learning in Medical Imaging

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15242))

Included in the following conference series:

  • 41 Accesses

Abstract

Medical imaging cohorts are often confounded by factors such as acquisition devices, hospital sites, patient backgrounds, and many more. As a result, deep learning models tend to learn spurious correlations instead of causally related features, limiting their generalizability to new and unseen data. This problem can be addressed by minimizing dependence measures between intermediate representations of task-related and non-task-related variables. These measures include mutual information, distance correlation, and the performance of adversarial classifiers. Here, we benchmark such dependence measures for the task of preventing shortcut learning. We study a simplified setting using Morpho-MNIST and a medical imaging task with CheXpert chest radiographs. Our results provide insights into how to mitigate confounding factors in medical imaging. The project’s code is publicly available (https://github.com/berenslab/dependence-measures-medical-imaging).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/dccastro/Morpho-MNIST.

  2. 2.

    https://stanfordmlgroup.github.io/competitions/chexpert/.

References

  1. Belghazi, M.I., et al.: Mutual information neural estimation. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 531–540. PMLR (2018)

    Google Scholar 

  2. Castro, D.C., Tan, J., Kainz, B., Konukoglu, E., Glocker, B.: Morpho-mnist: quantitative assessment and diagnostics for representation learning. J. Mach. Learn. Res. 20(178), 1–29 (2019)

    MathSciNet  Google Scholar 

  3. Castro, D.C., Walker, I., Glocker, B.: Causality matters in medical imaging. Nat. Commun. 11(1) (2020). https://doi.org/10.1038/s41467-020-17478-w

  4. Falcon, W.: The PyTorch Lightning team: PyTorch Lightning (2019). https://doi.org/10.5281/zenodo.3828935

  5. Fay, L., Cobos, E., Yang, B., Gatidis, S., Küstner, T.: Avoiding shortcut-learning by mutual information minimization in deep learning-based image processing. IEEE Access 11, 64070–64086 (2023). https://doi.org/10.1109/ACCESS.2023.3289397

    Article  Google Scholar 

  6. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, vol. 37, pp. 1180–1189 (2015)

    Google Scholar 

  7. Geirhos, R., et al.: Shortcut learning in deep neural networks. Nat. Mach. Intell. 2(11) (2020). https://doi.org/10.1038/s42256-020-00257-z

  8. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  9. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. (2012)

    Google Scholar 

  10. He, C., Wang, S., Kang, H., Zheng, L., Tan, T., Fan, X.: Adversarial domain adaptation network for tumor image diagnosis. Int. J. Approx. Reason. 135, 38–52 (2021). https://doi.org/10.1016/j.ijar.2021.04.010

    Article  MathSciNet  Google Scholar 

  11. Hu, Q., Wei, Y., Pang, J., Liang, M.: Unsupervised domain adaptation for brain structure segmentation via mutual information maximization alignment. Biomed. Signal Process. Control 90, 105784 (2024). https://doi.org/10.1016/j.bspc.2023.105784

    Article  Google Scholar 

  12. Irvin, J., et al.: Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison (2019)

    Google Scholar 

  13. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

    Chapter  Google Scholar 

  14. Koch, L.M., Baumgartner, C.F., Berens, P.: Distribution shift detection for the postmarket surveillance of medical ai algorithms: a retrospective simulation study. npj Dig. Med. (2024). https://doi.org/10.1038/s41746-024-01085-w

  15. Liu, X., Thermos, S., Valvano, G., Chartsias, A., O’Neil, A., Tsaftaris, S.A.: Measuring the biases and effectiveness of content-style disentanglement. In: Proceedings of the British Machine Vision Conference (BMVC) (2021)

    Google Scholar 

  16. Müller, S., Koch, L.M., Lensch, H.P.A., Berens, P.: Disentangling representations of retinal images with generative models (2024)

    Google Scholar 

  17. Sun, S., Koch, L.M., Baumgartner, C.F.: Right for the wrong reason: can interpretable ml techniques detect spurious correlations? In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14221, pp. 425–434. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-43895-0_40

    Chapter  Google Scholar 

  18. Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation of distances. Ann. Stat. 35(6) (2007). https://doi.org/10.1214/009053607000000505

  19. Xie, X., Chen, J., Li, Y., Shen, L., Ma, K., Zheng, Y.: MI\(^2\)GAN: generative adversarial network for medical image domain adaptation using mutual information constraint. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 516–525. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_50

    Chapter  Google Scholar 

  20. Zhen, X., Meng, Z., Chakraborty, R., Singh, V.: On the versatile uses of partial distance correlation in deep learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, vol. 13686, pp. 327–346. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19809-0_19

    Chapter  Google Scholar 

Download references

Acknowledgments

This project was supported by the Hertie Foundation and by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy with the Excellence Cluster 2064 “Machine Learning - New Perspectives for Science”, project number 390727645. This research utilized compute resources at the Tübingen Machine Learning Cloud, INST 37/1057-1 FUGG. PB is a member of the Else Kröner Medical Scientist Kolleg “ClinbrAIn: Artificial Intelligence for Clinical Brain Research”. The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting SM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sarah Müller or Philipp Berens .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare no competing interests.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 152 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Müller, S., Fay, L., Koch, L.M., Gatidis, S., Küstner, T., Berens, P. (2025). Benchmarking Dependence Measures to Prevent Shortcut Learning in Medical Imaging. In: Xu, X., Cui, Z., Rekik, I., Ouyang, X., Sun, K. (eds) Machine Learning in Medical Imaging. MLMI 2024. Lecture Notes in Computer Science, vol 15242. Springer, Cham. https://doi.org/10.1007/978-3-031-73290-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73290-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73292-8

  • Online ISBN: 978-3-031-73290-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics