Abstract
Deep neural networks trained via empirical risk minimization often exhibit significant performance disparities across groups, particularly when group and task labels are spuriously correlated (e.g., “grassy background” and “cows”). Existing bias mitigation methods that aim to address this issue often either rely on group labels for training or validation, or require an extensive hyperparameter search. Such data and computational requirements hinder the practical deployment of these methods, especially when datasets are too large to be group-annotated, computational resources are limited, and models are trained through already complex pipelines. In this paper, we propose Targeted Augmentations for Bias Mitigation (TAB), a simple hyperparameter-free framework that leverages the entire training history of a helper model to identify spurious samples, and generate a group-balanced training set from which a robust model can be trained. We show that TAB improves worst-group performance without any group information or model selection, outperforming existing methods while maintaining overall accuracy.
M. E. Zarlenga—Work done while the author was an intern at Sony AI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Our code is available at https://github.com/SonyResearch/tab_bias_mitigation.
References
Ahmed, F., Bengio, Y., Van Seijen, H., Courville, A.: Systematic generalisation with group invariant predictions. In: International Conference on Learning Representations (2020)
Andrews, J.T., et al.: Ethical considerations for collecting human-centric image datasets. ICML (2023)
Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. ACM SIGMOD Rec. 28(2), 49–60 (1999)
Arpit, D., et al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning, pp. 233–242. PMLR (2017)
Asgari, S., et al.: Masktune: mitigating spurious correlations by forcing to explore. In: Advances in Neural Information Processing Systems, vol. 35, pp. 23284–23296 (2022)
Badue, C., et al.: Self-driving cars: a survey. Expert Syst. Appl. 165, 113816 (2021)
Bahng, H., Chun, S., Yun, S., Choo, J., Oh, S.J.: Learning de-biased representations with biased representations. In: International Conference on Machine Learning, pp. 528–539. PMLR (2020)
Ben-Tal, A., Den Hertog, D., De Waegenaere, A., Melenberg, B., Rennen, G.: Robust solutions of optimization problems affected by uncertain probabilities. Manage. Sci. 59(2), 341–357 (2013)
Birhane, A., Prabhu, V.U., Kahembwe, E.: Multimodal datasets: misogyny, pornography, and malignant stereotypes. arXiv preprint arXiv:2110.01963 (2021)
Bommasani, R., et al.: On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 (2021)
Buolamwini, J., Gebru, T.: Gender shades: intersectional accuracy disparities in commercial gender classification. In: Conference on Fairness, Accountability and Transparency, pp. 77–91. PMLR (2018)
Crawford, K., Paglen, T.: Excavating AI: the politics of images in machine learning training sets. AI Soc. 36(4), 1105–1116 (2021)
Creager, E., Jacobsen, J.H., Zemel, R.: Environment inference for invariant learning. In: International Conference on Machine Learning, pp. 2189–2200. PMLR (2021)
De Vries, T., Misra, I., Wang, C., Van der Maaten, L.: Does object recognition work for everyone? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 52–59 (2019)
DeGrave, A.J., Janizek, J.D., Lee, S.I.: AI for radiographic COVID-19 detection selects shortcuts over signal. Nat. Mach. Intell. 3(7), 610–619 (2021)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)
d’Eon, G., d’Eon, J., Wright, J.R., Leyton-Brown, K.: The spotlight: a general method for discovering systematic errors in deep learning models. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, pp. 1962–1981 (2022)
Duchi, J.C., Glynn, P.W., Namkoong, H.: Statistics of robust optimization: a generalized empirical likelihood approach. Math. Oper. Res. 46(3), 946–969 (2021)
Eyuboglu, S., et al.: Domino: discovering systematic errors with cross-modal embeddings. ICLR (2022)
Fabbrizzi, S., Papadopoulos, S., Ntoutsi, E., Kompatsiaris, I.: A survey on bias in visual datasets. Comput. Vis. Image Underst. 223, 103552 (2022)
Geirhos, R., et al.: Shortcut learning in deep neural networks. Nat. Mach. Intell. 2(11), 665–673 (2020)
Goodman, B.W.: A step towards accountable algorithms?: algorithmic discrimination and the european union general data protection. In: 29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona. NIPS Foundation (2016)
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hendricks, L.A., Burns, K., Saenko, K., Darrell, T., Rohrbach, A.: Women also snowboard: Overcoming bias in captioning models. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 771–787 (2018)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)
Hu, W., Niu, G., Sato, I., Sugiyama, M.: Does distributionally robust supervised learning give robust classifiers? In: International Conference on Machine Learning, pp. 2029–2037. PMLR (2018)
Kay, M., Matuszek, C., Munson, S.A.: Unequal representation and gender stereotypes in image search results for occupations. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 3819–3828 (2015)
Kim, M.P., Ghorbani, A., Zou, J.: Multiaccuracy: black-box post-processing for fairness in classification. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 247–254 (2019)
Kim, Y., Mo, S., Kim, M., Lee, K., Lee, J., Shin, J.: Bias-to-text: debiasing unknown visual biases through language interpretation. arXiv preprint arXiv:2301.11104, vol. 2 (2023)
Kirichenko, P., Izmailov, P., Wilson, A.G.: Last layer re-training is sufficient for robustness to spurious correlations. ICLR (2023)
Kulkarni, A., Dery, L.M., Setlur, A., Raghunathan, A., Talwalkar, A., Neubig, G.: Multitask learning can improve worst-group outcomes. Trans. Mach. Learn. Res. (2023)
LaBonte, T., Muthukumar, V., Kumar, A.: Towards last-layer retraining for group robustness with fewer annotations. In: NeurIPS (2023)
Levy, D., Carmon, Y., Duchi, J.C., Sidford, A.: Large-scale methods for distributionally robust optimization. In: Advances in Neural Information Processing Systems, vol. 33, pp. 8847–8860 (2020)
Li, Z., et al.: A WHAC-a-mole dilemma: shortcuts come in multiples where mitigating one amplifies others. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20071–20082 (2023)
Li, Z., Hoogs, A., Xu, C.: Discover and mitigate unknown biases with debiasing alternate networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13673, pp. 270–288. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19778-9_16
Liu, E.Z., et al: Just train twice: improving group robustness without training group information. In: International Conference on Machine Learning, pp. 6781–6792. PMLR (2021)
Liu, Z., Luo, P., Wang, X., Tang, X.: Large-scale celebfaces attributes (CelebA) dataset (2018). Retrieved 15 Aug 2018
Ma, X., Wang, Z., Liu, W.: On the tradeoff between robustness and fairness. In: Advances in Neural Information Processing Systems, vol. 35, pp. 26230–26241 (2022)
Nam, J., Cha, H., Ahn, S., Lee, J., Shin, J.: Learning from failure: de-biasing classifier from biased classifier. In: Advances in Neural Information Processing Systems, vol. 33, pp. 20673–20684 (2020)
Nam, J., Kim, J., Lee, J., Shin, J.: Spread spurious attribute: improving worst-group accuracy with spurious attribute estimation. ICLR (2022)
Oakden-Rayner, L., Dunnmon, J., Carneiro, G., Ré, C.: Hidden stratification causes clinically meaningful failures in machine learning for medical imaging. In: Proceedings of the ACM Conference on Health, Inference, and Learning, pp. 151–159 (2020)
O’neil, C.: Weapons of math destruction: how big data increases inequality and threatens democracy. Crown (2017)
Oren, Y., Sagawa, S., Hashimoto, T.B., Liang, P.: Distributionally robust language modeling. arXiv preprint arXiv:1909.02060 (2019)
Paranjape, B., Dasigi, P., Srikumar, V., Zettlemoyer, L., Hajishirzi, H.: AGRO: Adversarial Discovery of Error-prone groups for Robust Optimization. arXiv preprint arXiv:2212.00921 (2022)
Pezeshki, M., Kaba, O., Bengio, Y., Courville, A.C., Precup, D., Lajoie, G.: Gradient starvation: a learning proclivity in neural networks. In: Advances in Neural Information Processing Systems, vol. 34, pp. 1256–1272 (2021)
Prabhu, V.U., Birhane, A.: Large image datasets: a pyrrhic win for computer vision? arXiv preprint arXiv:2006.16923 (2020)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Ramakrishnan, S., Agrawal, A., Lee, S.: Overcoming language priors in visual question answering with adversarial regularization. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Ramesh, A., et al.: Zero-shot text-to-image generation. In: International Conference on Machine Learning, pp. 8821–8831. PMLR (2021)
Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. In: International Conference on Machine Learning, pp. 4334–4343. PMLR (2018)
Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., Zhong, C.: Interpretable machine learning: Fundamental principles and 10 grand challenges. arXiv preprint arXiv:2103.11251 (2021)
Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neural networks for group shifts: on the importance of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731 (2019)
Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1177–1178 (2010)
Shah, H., Tamuly, K., Raghunathan, A., Jain, P., Netrapalli, P.: The pitfalls of simplicity bias in neural networks. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9573–9585 (2020)
Shi: Multiclass spectral clustering. In: Proceedings Ninth IEEE International Conference on Computer Vision, pp. 313–319. IEEE (2003)
Shrestha, R., Kafle, K., Kanan, C.: Occamnets: mitigating dataset bias by favoring simpler hypotheses. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13680, pp. 702–721. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20044-1_40
Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)
Singh, K.K., Mahajan, D., Grauman, K., Lee, Y.J., Feiszli, M., Ghadiyaram, D.: Don’t judge an object by its context: learning to overcome contextual bias. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11070–11078 (2020)
Sohoni, N., Dunnmon, J., Angus, G., Gu, A., Ré, C.: No subclass left behind: fine-grained robustness in coarse-grained classification problems. In: Advances in Neural Information Processing Systems, vol. 33, pp. 19339–19352 (2020)
Taghanaki, S.A., Choi, K., Khasahmadi, A.H., Goyal, A.: Robust representation learning via perceptual similarity metrics. In: International Conference on Machine Learning, pp. 10043–10053. PMLR (2021)
Tommasi, T., Patricia, N., Caputo, B., Tuytelaars, T.: A deeper look at dataset bias. In: Domain Adaptation in Computer Vision Applications, pp. 37–55 (2017)
Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR 2011, pp. 1521–1528. IEEE (2011)
Tsirigotis, C., Monteiro, J., Rodriguez, P., Vazquez, D., Courville, A.: Group robust classification without any group information. In: NeurIPS (2023)
Valle-Perez, G., Camargo, C.Q., Louis, A.A.: Deep learning generalizes because the parameter-function map is biased towards simple functions. ICLR (2019)
Vapnik, V.: Principles of risk minimization for learning theory. In: Advances in Neural Information Processing Systems, vol. 4 (1991)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD birds-200-2011 dataset. Technical report, CNS-TR-2011-001, California Institute of Technology (2011)
Wang, A., et al.: Revise: a tool for measuring and mitigating bias in visual datasets. Int. J. Comput. Vision 130(7), 1790–1810 (2022)
Wang, A., Russakovsky, O.: Directional bias amplification. In: International Conference on Machine Learning, pp. 10882–10893. PMLR (2021)
Wang, A., Russakovsky, O.: Overwriting pretrained bias with finetuning data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3957–3968 (2023)
Wang, T., Zhao, J., Yatskar, M., Chang, K.W., Ordonez, V.: Balanced datasets are not enough: estimating and mitigating gender bias in deep image representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5310–5319 (2019)
Ward, J.H., Jr.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)
Wei, J., Narasimhan, H., Amid, E., Chu, W.S., Liu, Y., Kumar, A.: Distributionally robust post-hoc classifiers under prior shifts. ICLR (2023)
Wu, T., Ribeiro, M.T., Heer, J., Weld, D.S.: Errudite: scalable, reproducible, and testable error analysis. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 747–763 (2019)
Yenamandra, S., Ramesh, P., Prabhu, V., Hoffman, J.: Facts: first amplify correlations and then slice to discover bias. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4794–4804 (2023)
Yu, R., Alì, G.S.: What’s inside the black box? AI challenges for lawyers and researchers. Leg. Inf. Manag. 19(1), 2–13 (2019)
Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adversarial learning. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 335–340 (2018)
Zhao, D., Andrews, J., Xiang, A.: Men also do laundry: multi-attribute bias amplification. In: International Conference on Machine Learning, pp. 42000–42017. PMLR (2023)
Zhao, J., Wang, T., Yatskar, M., Ordonez, V., Chang, K.W.: Men also like shopping: reducing gender bias amplification using corpus-level constraints. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2979–2989 (2017)
Zhu, X., Anguelov, D., Ramanan, D.: Capturing long-tail distributions of object subcategories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 915–922 (2014)
Acknowledgements
This work was funded by Sony Research. The authors would like to thank Apostolos Modas, William Thong, Wiebke Hutiri, and Andrei Margeloiu for their insightful comments and feedback on previous iterations of this manuscript. MEZ acknowledges further support from the Gates Cambridge Trust via a Gates Cambridge Scholarship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Espinosa Zarlenga, M., Sankaranarayanan, S., Andrews, J.T.A., Shams, Z., Jamnik, M., Xiang, A. (2025). Efficient Bias Mitigation Without Privileged Information. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15130. Springer, Cham. https://doi.org/10.1007/978-3-031-73220-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-73220-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73219-5
Online ISBN: 978-3-031-73220-1
eBook Packages: Computer ScienceComputer Science (R0)