Nothing Special   »   [go: up one dir, main page]

Skip to main content

Imaging with Confidence: Uncertainty Quantification for High-Dimensional Undersampled MR Images

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15136))

Included in the following conference series:

  • 26 Accesses

Abstract

Establishing certified uncertainty quantification (UQ) in imaging processing applications continues to pose a significant challenge. In particular, such a goal is crucial for accurate and reliable medical imaging if one aims for precise diagnostics and appropriate intervention. In the case of magnetic resonance imaging, one of the essential tools of modern medicine, enormous advancements in fast image acquisition were possible after the introduction of compressive sensing and, more recently, deep learning methods. Still, as of now, there is no UQ method that is both fully rigorous and scalable. This work takes a step towards closing this gap by proposing a total variation minimization-based method for pixel-wise sharp confidence intervals for undersampled MRI. We demonstrate that our method empirically achieves the predicted confidence levels. We expect that our approach will also have implications for other imaging modalities as well as deep learning applications in computer vision. Our code is available on GitHub https://github.com/HannahLaus/Project_UQ_TV.git.

F. Hoppe, C. M. Verdun, and H. Laus—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The notation m(N) considers a sequence of regression problems, where both dimensions m and N are growing with the rate \(\frac{s\sqrt{\log N}}{m}\rightarrow 0\).

  2. 2.

    https://github.com/HannahLaus/Project_UQ_TV.git.

  3. 3.

    Siemens Healthineers, Erlangen, Germany.

References

  1. ECCV 2022 Workshop: Workshop on Uncertainty Quantification for Computer Vision. https://uncv2022.github.io/papers/. Accessed 26 Feb 2024

  2. FDA 510(k) Premarket Notification for HyperSense. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K162722. Accessed 26 Feb 2024

  3. FDA 510(k) Premarket Notification for MAGNETOM Aera and MAGNETOM Skyra. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K163312. Accessed 26 Feb 2024

  4. HyperSense: Compressed sensing and other advanced acceleration techniques. https://www.gehealthcare.com/-/jssmedia/files/us/non-gated/mri/hypersense-booklet.pdf?rev=-1&hash=FAE260A3F4CA0A82E236DEDA5CAD39A6. Accessed 26 Feb 2024

  5. ICCV 2023 Workshop: Workshop on Uncertainty Quantification for Computer Vision. https://uncv2023.github.io/papers/. Accessed 26 Feb 2024

  6. ICML 2021 Workshop: Workshop on Distribution-Free Uncertainty Quantification. https://icml.cc/virtual/2021/workshop/8373. Accessed 26 Feb 2024

  7. Adcock, B., Hansen, A.C.: Compressive Imaging: Structure, Sampling, Learning. Cambridge University Press (2021). https://doi.org/10.1017/9781108377447

  8. Aja-Fernández, S., Vegas-Sánchez-Ferrero, G.: Statistical Analysis of Noise in MRI: Modeling, Filtering and Estimation. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39934-8

    Book  Google Scholar 

  9. Angelopoulos, A.N., Bates, S.: A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511 (2021). https://doi.org/10.48550/arXiv.2107.07511

  10. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009). https://doi.org/10.1137/080716542

    Article  MathSciNet  Google Scholar 

  11. Bellec, P.C., Zhang, C.H.: Debiasing convex regularized estimators and interval estimation in linear models. Ann. Stat. 51(2), 391–436 (2023). https://doi.org/10.1214/22-AOS2243

    Article  MathSciNet  Google Scholar 

  12. Block, K.T., Uecker, M., Frahm, J.: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn. Resonan. Med.: Official J. Int. Soc. Magn. Resonan. Medi. 57(6), 1086–1098 (2007). https://doi.org/10.1002/mrm.21236

  13. Cai, T.T., Guo, Z.: Confidence intervals for high-dimensional linear regression: minimax rates and adaptivity. Ann. Stat. 45(2), 615–646 (2017). https://doi.org/10.1214/16-AOS1461

    Article  MathSciNet  Google Scholar 

  14. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T., et al.: An introduction to total variation for image analysis. Theor. Found. Numer. Methods Sparse Recov. 9(263–340), 227 (2010). https://doi.org/10.1515/9783110226157.263

    Article  MathSciNet  Google Scholar 

  15. Condat, L.: Discrete total variation: new definition and minimization. SIAM J. Imag. Sci. 10(3), 1258–1290 (2017). https://doi.org/10.1137/16M1075247

    Article  MathSciNet  Google Scholar 

  16. Cruz, G., Atkinson, D., Buerger, C., Schaeffter, T., Prieto, C.: Accelerated motion corrected three-dimensional abdominal MRI using total variation regularized SENSE reconstruction. Magn. Reson. Med. 75(4), 1484–1498 (2016). https://doi.org/10.1002/mrm.25708

    Article  Google Scholar 

  17. Cukur, T., Lustig, M., Nishimura, D.G.: Improving non-contrast-enhanced steady-state free precession angiography with compressed sensing. Magn. Reson. Med. 61(5), 1122–1131 (2009). https://doi.org/10.1002/mrm.21907

    Article  Google Scholar 

  18. Donoho, D.: Blackboard to bedside: how high-dimensional geometry is transforming the MRI industry. Not. Am. Math. Soc. 65(1) (2018). https://doi.org/10.1090/noti1612

  19. Endt, S., et al.: In vivo myelin water quantification using diffusion-relaxation correlation MRI: a comparison of 1D and 2D methods. Appl. Magn. Reson. 54(11), 1571–1588 (2023). https://doi.org/10.1007/s00723-023-01584-1

    Article  Google Scholar 

  20. Feng, H., Gu, H., Silbersweig, D., Stern, E., Yang, Y.: Single-shot MR imaging using trapezoidal-gradient-based Lissajous trajectories. IEEE Trans. Med. Imaging 22(8), 925–932 (2003). https://doi.org/10.1109/TMI.2003.815902

    Article  Google Scholar 

  21. Fischer, P., Thomas, K., Baumgartner, C.F.: Uncertainty estimation and propagation in accelerated MRI reconstruction. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds.) UNSURE 2023. LNCS, vol. 14291, pp. 84–94. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44336-7_9

    Chapter  Google Scholar 

  22. Fu, W., Knight, K.: Asymptotics for lasso-type estimators. Ann. Stat. 28(5), 1356–1378 (2000). https://doi.org/10.1214/aos/1015957397

    Article  MathSciNet  Google Scholar 

  23. Giraud, C.: Introduction to High-Dimensional Statistics. Chapman and Hall/CRC (2021)

    Google Scholar 

  24. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imag. Sci. 2(2), 323–343 (2009). https://doi.org/10.1137/080725891

    Article  MathSciNet  Google Scholar 

  25. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018). https://doi.org/10.1002/mrm.26977

    Article  Google Scholar 

  26. Han, Y., Lee, T.C.: Uncertainty quantification for sparse estimation of spectral lines. IEEE Trans. Signal Process. 70, 6243–6256 (2022). https://doi.org/10.1109/TSP.2023.3235662

    Article  MathSciNet  Google Scholar 

  27. Hannig, J., Iyer, H., Lai, R.C., Lee, T.C.: Generalized fiducial inference: a review and new results. J. Am. Stat. Assoc. 111(515), 1346–1361 (2016). https://doi.org/10.1080/01621459.2016.1165102

    Article  MathSciNet  Google Scholar 

  28. Hoppe, F., Krahmer, F., Mayrink Verdun, C., Menzel, M., Rauhut, H.: Uncertainty quantification for sparse Fourier recovery. arXiv:2212.14864 (2022)

  29. Hoppe, F., Krahmer, F., Mayrink Verdun, C., Menzel, M., Rauhut, H.: High-dimensional confidence regions in sparse MRI. In: ICASSP 2023, pp. 1–5 (2023). https://doi.org/10.1109/ICASSP49357.2023.10096320

  30. Hoppe, F., Mayrink Verdun, C., Laus, H., Krahmer, F., Rauhut, H.: Non-asymptotic uncertainty quantification in high-dimensional learning. arXiv preprint (2024)

    Google Scholar 

  31. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110, 457–506 (2021). https://doi.org/10.1007/s10994-021-05946-3

    Article  MathSciNet  Google Scholar 

  32. Hütter, J.C., Rigollet, P.: Optimal rates for total variation denoising. In: Conference on Learning Theory, pp. 1115–1146. PMLR (2016)

    Google Scholar 

  33. Hyun, C.M., Kim, H.P., Lee, S.M., Lee, S., Seo, J.K.: Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 63(13), 135007 (2018). https://doi.org/10.1088/1361-6560/aac71a9

    Article  Google Scholar 

  34. Jaspan, O., Fleysher, R., Lipton, M.: Compressed sensing MRI: a review of the clinical literature. Br. J. Radiol. 88, 20150487 (2015). https://doi.org/10.1259/bjr.20150487

    Article  Google Scholar 

  35. Javanmard, A., Montanari, A.: Confidence intervals and hypothesis testing for high-dimensional regression. J. Mach. Learn. Res. 15, 2869–2909 (2014)

    MathSciNet  Google Scholar 

  36. Javanmard, A., Montanari, A.: Debiasing the lasso: optimal sample size for Gaussian designs. Ann. Stat. 46(6A) (2018). https://doi.org/10.1214/17-AOS1630

  37. Kaethner, C., Erb, W., Ahlborg, M., Szwargulski, P., Knopp, T., Buzug, T.M.: Non-equispaced system matrix acquisition for magnetic particle imaging based on Lissajous node points. IEEE Trans. Med. Imaging 35(11), 2476–2485 (2016). https://doi.org/10.1109/TMI.2016.2580458

    Article  Google Scholar 

  38. Korkmaz, Y., Yurt, M., Dar, S.U.H., Özbey, M., Cukur, T.: Deep MRI reconstruction with generative vision transformers. In: Haq, N., Johnson, P., Maier, A., Würfl, T., Yoo, J. (eds.) MLMIR 2021. LNCS, vol. 12964, pp. 54–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88552-6_6

    Chapter  Google Scholar 

  39. Krahmer, F., Ward, R.: Stable and robust sampling strategies for compressive imaging. IEEE Trans. Image Process. 23(2), 612–622 (2013). https://doi.org/10.1109/TIP.2013.2288004

    Article  MathSciNet  Google Scholar 

  40. Krahmer, F., Kruschel, C., Sandbichler, M.: Total variation minimization in compressed sensing. In: Boche, H., Caire, G., Calderbank, R., März, M., Kutyniok, G., Mathar, R. (eds.) Compressed Sensing and its Applications. ANHA, pp. 333–358. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69802-1_11

    Chapter  Google Scholar 

  41. Lai, R.C., Hannig, J., Lee, T.C.: Generalized fiducial inference for ultrahigh-dimensional regression. J. Am. Stat. Assoc. 110(510), 760–772 (2015). https://doi.org/10.1080/01621459.2014.931237

    Article  MathSciNet  Google Scholar 

  42. Liang, Z.P., Lauterbur, P.C.: Principles of Magnetic Resonance Imaging. SPIE Optical Engineering Press, Belllingham (2000)

    Google Scholar 

  43. Lin, A., Song, A.H., Bilgic, B., Ba, D.: Covariance-free sparse Bayesian learning. IEEE Trans. Signal Process. 70, 3818–3831 (2022). https://doi.org/10.1109/TSP.2022.3186185

    Article  MathSciNet  Google Scholar 

  44. Lin, K., Heckel, R.: Vision transformers enable fast and robust accelerated MRI. In: International Conference on Medical Imaging with Deep Learning, pp. 774–795. PMLR (2022)

    Google Scholar 

  45. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007). https://doi.org/10.1002/mrm.21391

    Article  Google Scholar 

  46. Mueller, L., Rudrapatna, S.U., Tax, C.M., Wise, R., Jones, D.K.: Diffusion MRI with b = 1000 s/mm\(^2\) at TE\(<\)22 ms using single-shot spiral readout and ultra-strong gradients: implications for microstructure imaging. In: Proceedings of the International Society for Magnetic Resonance in Medicine, Presented at the ISMRM (2019)

    Google Scholar 

  47. Nassirpour, S., Chang, P., Avdievitch, N., Henning, A.: Compressed sensing for high-resolution nonlipid suppressed 1H FID MRSI of the human brain at 9.4 T. Magn. Reson. Med. 80(6), 2311–2325 (2018). https://doi.org/10.1002/mrm.27225

  48. Needell, D., Ward, R.: Stable image reconstruction using total variation minimization. SIAM J. Imag. Sci. 6(2), 1035–1058 (2013). https://doi.org/10.1137/120868281

    Article  MathSciNet  Google Scholar 

  49. Poon, C.: On the role of total variation in compressed sensing. SIAM J. Imaging Sci. 8(1), 682–720 (2015). https://doi.org/10.1137/140978569

    Article  MathSciNet  Google Scholar 

  50. Pruessmann, K.P., Weiger, M., Börnert, P., Boesiger, P.: Advances in sensitivity encoding with arbitrary k-space trajectories. Magn. Reson. Med. 46(4), 638–651 (2001). https://doi.org/10.1002/mrm.1241

    Article  Google Scholar 

  51. Rastogi, A., et al.: Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study. Lancet Oncol. 25(3), 400–410 (2024). https://doi.org/10.1016/S1470-2045(23)00641-1

    Article  Google Scholar 

  52. Roth, S., Black, M.: Fields of experts: a framework for learning image priors. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 860–867 (2005). https://doi.org/10.1109/CVPR.2005.160

  53. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  Google Scholar 

  54. Saucedo, A., Macey, P.M., Thomas, M.A.: Accelerated radial echo-planar spectroscopic imaging using golden angle view-ordering and compressed-sensing reconstruction with total variation regularization. Magn. Reson. Med. 86(1), 46–61 (2021). https://doi.org/10.1002/mrm.28728

    Article  Google Scholar 

  55. Schweser, F., Deistung, A., Reichenbach, J.R.: Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM). Z. Med. Phys. 26(1), 6–34 (2016). https://doi.org/10.1016/j.zemedi.2015.10.002

    Article  Google Scholar 

  56. Shafieizargar, B., Byanju, R., Sijbers, J., Klein, S., den Dekker, A.J., Poot, D.H.: Systematic review of reconstruction techniques for accelerated quantitative MRI. Magn. Reson. Med. (2023). https://doi.org/10.1002/mrm.29721

    Article  Google Scholar 

  57. Tezcan, K.C., Karani, N., Baumgartner, C.F., Konukoglu, E.: Sampling possible reconstructions of undersampled acquisitions in MR imaging with a deep learned prior. IEEE Trans. Med. Imaging 41(7), 1885–1896 (2022). https://doi.org/10.1109/TMI.2022.3150853

    Article  Google Scholar 

  58. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 58(1), 267–288 (1996). https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  MathSciNet  Google Scholar 

  59. Valdenegro-Toro, M.: I find your lack of uncertainty in computer vision disturbing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1263–1272 (2021). https://doi.org/10.1109/CVPRW53098.2021.00139

  60. van de Geer, S., Bühlmann, P., Ritov, Y., Dezeure, R.: On asymptotically optimal confidence regions and tests for high-dimensional models. Ann. Stat. 42(3) (2014). https://doi.org/10.1214/14-AOS1221

  61. Wilm, B.J., et al.: Single-shot spiral imaging enabled by an expanded encoding model: demonstration in diffusion MRI. Magn. Reson. Med. 77(1), 83–91 (2017). https://doi.org/10.1002/mrm.26493

    Article  Google Scholar 

  62. Wilm, B.J., Barmet, C., Pavan, M., Pruessmann, K.P.: Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations. Magn. Reson. Med. 65(6), 1690–1701 (2011). https://doi.org/10.1002/mrm.22767

    Article  Google Scholar 

  63. Winkelmann, S., Schaeffter, T., Koehler, T., Eggers, H., Doessel, O.: An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE Trans. Med. Imaging 26(1), 68–76 (2006). https://doi.org/10.1109/TMI.2006.885337

    Article  Google Scholar 

  64. Zeng, G., et al.: A review on deep learning MRI reconstruction without fully sampled k-space. BMC Med. Imaging 21(1), 195 (2021). https://doi.org/10.1186/s12880-021-00727-9

    Article  Google Scholar 

  65. Zhang, C.H., Zhang, S.S.: Confidence intervals for low dimensional parameters in high dimensional linear models. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 76(1), 217–242 (2014). https://doi.org/10.1111/rssb.12026

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support with funds provided by the German Federal Ministry of Education and Research in the grant “SparseMRI3D+: Compressive Sensing und Quantifizierung von Unsicherheiten für die beschleunigte multiparametrische quantitative Magnetresonanztomografie (FZK 05M20WOA)” and funding by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 952172.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Hoppe .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 871 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoppe, F. et al. (2025). Imaging with Confidence: Uncertainty Quantification for High-Dimensional Undersampled MR Images. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15136. Springer, Cham. https://doi.org/10.1007/978-3-031-73229-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73229-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73228-7

  • Online ISBN: 978-3-031-73229-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics