Abstract
Establishing certified uncertainty quantification (UQ) in imaging processing applications continues to pose a significant challenge. In particular, such a goal is crucial for accurate and reliable medical imaging if one aims for precise diagnostics and appropriate intervention. In the case of magnetic resonance imaging, one of the essential tools of modern medicine, enormous advancements in fast image acquisition were possible after the introduction of compressive sensing and, more recently, deep learning methods. Still, as of now, there is no UQ method that is both fully rigorous and scalable. This work takes a step towards closing this gap by proposing a total variation minimization-based method for pixel-wise sharp confidence intervals for undersampled MRI. We demonstrate that our method empirically achieves the predicted confidence levels. We expect that our approach will also have implications for other imaging modalities as well as deep learning applications in computer vision. Our code is available on GitHub https://github.com/HannahLaus/Project_UQ_TV.git.
F. Hoppe, C. M. Verdun, and H. Laus—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The notation m(N) considers a sequence of regression problems, where both dimensions m and N are growing with the rate \(\frac{s\sqrt{\log N}}{m}\rightarrow 0\).
- 2.
- 3.
Siemens Healthineers, Erlangen, Germany.
References
ECCV 2022 Workshop: Workshop on Uncertainty Quantification for Computer Vision. https://uncv2022.github.io/papers/. Accessed 26 Feb 2024
FDA 510(k) Premarket Notification for HyperSense. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K162722. Accessed 26 Feb 2024
FDA 510(k) Premarket Notification for MAGNETOM Aera and MAGNETOM Skyra. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K163312. Accessed 26 Feb 2024
HyperSense: Compressed sensing and other advanced acceleration techniques. https://www.gehealthcare.com/-/jssmedia/files/us/non-gated/mri/hypersense-booklet.pdf?rev=-1&hash=FAE260A3F4CA0A82E236DEDA5CAD39A6. Accessed 26 Feb 2024
ICCV 2023 Workshop: Workshop on Uncertainty Quantification for Computer Vision. https://uncv2023.github.io/papers/. Accessed 26 Feb 2024
ICML 2021 Workshop: Workshop on Distribution-Free Uncertainty Quantification. https://icml.cc/virtual/2021/workshop/8373. Accessed 26 Feb 2024
Adcock, B., Hansen, A.C.: Compressive Imaging: Structure, Sampling, Learning. Cambridge University Press (2021). https://doi.org/10.1017/9781108377447
Aja-Fernández, S., Vegas-Sánchez-Ferrero, G.: Statistical Analysis of Noise in MRI: Modeling, Filtering and Estimation. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39934-8
Angelopoulos, A.N., Bates, S.: A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511 (2021). https://doi.org/10.48550/arXiv.2107.07511
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009). https://doi.org/10.1137/080716542
Bellec, P.C., Zhang, C.H.: Debiasing convex regularized estimators and interval estimation in linear models. Ann. Stat. 51(2), 391–436 (2023). https://doi.org/10.1214/22-AOS2243
Block, K.T., Uecker, M., Frahm, J.: Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn. Resonan. Med.: Official J. Int. Soc. Magn. Resonan. Medi. 57(6), 1086–1098 (2007). https://doi.org/10.1002/mrm.21236
Cai, T.T., Guo, Z.: Confidence intervals for high-dimensional linear regression: minimax rates and adaptivity. Ann. Stat. 45(2), 615–646 (2017). https://doi.org/10.1214/16-AOS1461
Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T., et al.: An introduction to total variation for image analysis. Theor. Found. Numer. Methods Sparse Recov. 9(263–340), 227 (2010). https://doi.org/10.1515/9783110226157.263
Condat, L.: Discrete total variation: new definition and minimization. SIAM J. Imag. Sci. 10(3), 1258–1290 (2017). https://doi.org/10.1137/16M1075247
Cruz, G., Atkinson, D., Buerger, C., Schaeffter, T., Prieto, C.: Accelerated motion corrected three-dimensional abdominal MRI using total variation regularized SENSE reconstruction. Magn. Reson. Med. 75(4), 1484–1498 (2016). https://doi.org/10.1002/mrm.25708
Cukur, T., Lustig, M., Nishimura, D.G.: Improving non-contrast-enhanced steady-state free precession angiography with compressed sensing. Magn. Reson. Med. 61(5), 1122–1131 (2009). https://doi.org/10.1002/mrm.21907
Donoho, D.: Blackboard to bedside: how high-dimensional geometry is transforming the MRI industry. Not. Am. Math. Soc. 65(1) (2018). https://doi.org/10.1090/noti1612
Endt, S., et al.: In vivo myelin water quantification using diffusion-relaxation correlation MRI: a comparison of 1D and 2D methods. Appl. Magn. Reson. 54(11), 1571–1588 (2023). https://doi.org/10.1007/s00723-023-01584-1
Feng, H., Gu, H., Silbersweig, D., Stern, E., Yang, Y.: Single-shot MR imaging using trapezoidal-gradient-based Lissajous trajectories. IEEE Trans. Med. Imaging 22(8), 925–932 (2003). https://doi.org/10.1109/TMI.2003.815902
Fischer, P., Thomas, K., Baumgartner, C.F.: Uncertainty estimation and propagation in accelerated MRI reconstruction. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds.) UNSURE 2023. LNCS, vol. 14291, pp. 84–94. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44336-7_9
Fu, W., Knight, K.: Asymptotics for lasso-type estimators. Ann. Stat. 28(5), 1356–1378 (2000). https://doi.org/10.1214/aos/1015957397
Giraud, C.: Introduction to High-Dimensional Statistics. Chapman and Hall/CRC (2021)
Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imag. Sci. 2(2), 323–343 (2009). https://doi.org/10.1137/080725891
Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018). https://doi.org/10.1002/mrm.26977
Han, Y., Lee, T.C.: Uncertainty quantification for sparse estimation of spectral lines. IEEE Trans. Signal Process. 70, 6243–6256 (2022). https://doi.org/10.1109/TSP.2023.3235662
Hannig, J., Iyer, H., Lai, R.C., Lee, T.C.: Generalized fiducial inference: a review and new results. J. Am. Stat. Assoc. 111(515), 1346–1361 (2016). https://doi.org/10.1080/01621459.2016.1165102
Hoppe, F., Krahmer, F., Mayrink Verdun, C., Menzel, M., Rauhut, H.: Uncertainty quantification for sparse Fourier recovery. arXiv:2212.14864 (2022)
Hoppe, F., Krahmer, F., Mayrink Verdun, C., Menzel, M., Rauhut, H.: High-dimensional confidence regions in sparse MRI. In: ICASSP 2023, pp. 1–5 (2023). https://doi.org/10.1109/ICASSP49357.2023.10096320
Hoppe, F., Mayrink Verdun, C., Laus, H., Krahmer, F., Rauhut, H.: Non-asymptotic uncertainty quantification in high-dimensional learning. arXiv preprint (2024)
Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110, 457–506 (2021). https://doi.org/10.1007/s10994-021-05946-3
Hütter, J.C., Rigollet, P.: Optimal rates for total variation denoising. In: Conference on Learning Theory, pp. 1115–1146. PMLR (2016)
Hyun, C.M., Kim, H.P., Lee, S.M., Lee, S., Seo, J.K.: Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 63(13), 135007 (2018). https://doi.org/10.1088/1361-6560/aac71a9
Jaspan, O., Fleysher, R., Lipton, M.: Compressed sensing MRI: a review of the clinical literature. Br. J. Radiol. 88, 20150487 (2015). https://doi.org/10.1259/bjr.20150487
Javanmard, A., Montanari, A.: Confidence intervals and hypothesis testing for high-dimensional regression. J. Mach. Learn. Res. 15, 2869–2909 (2014)
Javanmard, A., Montanari, A.: Debiasing the lasso: optimal sample size for Gaussian designs. Ann. Stat. 46(6A) (2018). https://doi.org/10.1214/17-AOS1630
Kaethner, C., Erb, W., Ahlborg, M., Szwargulski, P., Knopp, T., Buzug, T.M.: Non-equispaced system matrix acquisition for magnetic particle imaging based on Lissajous node points. IEEE Trans. Med. Imaging 35(11), 2476–2485 (2016). https://doi.org/10.1109/TMI.2016.2580458
Korkmaz, Y., Yurt, M., Dar, S.U.H., Özbey, M., Cukur, T.: Deep MRI reconstruction with generative vision transformers. In: Haq, N., Johnson, P., Maier, A., Würfl, T., Yoo, J. (eds.) MLMIR 2021. LNCS, vol. 12964, pp. 54–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88552-6_6
Krahmer, F., Ward, R.: Stable and robust sampling strategies for compressive imaging. IEEE Trans. Image Process. 23(2), 612–622 (2013). https://doi.org/10.1109/TIP.2013.2288004
Krahmer, F., Kruschel, C., Sandbichler, M.: Total variation minimization in compressed sensing. In: Boche, H., Caire, G., Calderbank, R., März, M., Kutyniok, G., Mathar, R. (eds.) Compressed Sensing and its Applications. ANHA, pp. 333–358. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69802-1_11
Lai, R.C., Hannig, J., Lee, T.C.: Generalized fiducial inference for ultrahigh-dimensional regression. J. Am. Stat. Assoc. 110(510), 760–772 (2015). https://doi.org/10.1080/01621459.2014.931237
Liang, Z.P., Lauterbur, P.C.: Principles of Magnetic Resonance Imaging. SPIE Optical Engineering Press, Belllingham (2000)
Lin, A., Song, A.H., Bilgic, B., Ba, D.: Covariance-free sparse Bayesian learning. IEEE Trans. Signal Process. 70, 3818–3831 (2022). https://doi.org/10.1109/TSP.2022.3186185
Lin, K., Heckel, R.: Vision transformers enable fast and robust accelerated MRI. In: International Conference on Medical Imaging with Deep Learning, pp. 774–795. PMLR (2022)
Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007). https://doi.org/10.1002/mrm.21391
Mueller, L., Rudrapatna, S.U., Tax, C.M., Wise, R., Jones, D.K.: Diffusion MRI with b = 1000 s/mm\(^2\) at TE\(<\)22 ms using single-shot spiral readout and ultra-strong gradients: implications for microstructure imaging. In: Proceedings of the International Society for Magnetic Resonance in Medicine, Presented at the ISMRM (2019)
Nassirpour, S., Chang, P., Avdievitch, N., Henning, A.: Compressed sensing for high-resolution nonlipid suppressed 1H FID MRSI of the human brain at 9.4 T. Magn. Reson. Med. 80(6), 2311–2325 (2018). https://doi.org/10.1002/mrm.27225
Needell, D., Ward, R.: Stable image reconstruction using total variation minimization. SIAM J. Imag. Sci. 6(2), 1035–1058 (2013). https://doi.org/10.1137/120868281
Poon, C.: On the role of total variation in compressed sensing. SIAM J. Imaging Sci. 8(1), 682–720 (2015). https://doi.org/10.1137/140978569
Pruessmann, K.P., Weiger, M., Börnert, P., Boesiger, P.: Advances in sensitivity encoding with arbitrary k-space trajectories. Magn. Reson. Med. 46(4), 638–651 (2001). https://doi.org/10.1002/mrm.1241
Rastogi, A., et al.: Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study. Lancet Oncol. 25(3), 400–410 (2024). https://doi.org/10.1016/S1470-2045(23)00641-1
Roth, S., Black, M.: Fields of experts: a framework for learning image priors. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 860–867 (2005). https://doi.org/10.1109/CVPR.2005.160
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F
Saucedo, A., Macey, P.M., Thomas, M.A.: Accelerated radial echo-planar spectroscopic imaging using golden angle view-ordering and compressed-sensing reconstruction with total variation regularization. Magn. Reson. Med. 86(1), 46–61 (2021). https://doi.org/10.1002/mrm.28728
Schweser, F., Deistung, A., Reichenbach, J.R.: Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM). Z. Med. Phys. 26(1), 6–34 (2016). https://doi.org/10.1016/j.zemedi.2015.10.002
Shafieizargar, B., Byanju, R., Sijbers, J., Klein, S., den Dekker, A.J., Poot, D.H.: Systematic review of reconstruction techniques for accelerated quantitative MRI. Magn. Reson. Med. (2023). https://doi.org/10.1002/mrm.29721
Tezcan, K.C., Karani, N., Baumgartner, C.F., Konukoglu, E.: Sampling possible reconstructions of undersampled acquisitions in MR imaging with a deep learned prior. IEEE Trans. Med. Imaging 41(7), 1885–1896 (2022). https://doi.org/10.1109/TMI.2022.3150853
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 58(1), 267–288 (1996). https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
Valdenegro-Toro, M.: I find your lack of uncertainty in computer vision disturbing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1263–1272 (2021). https://doi.org/10.1109/CVPRW53098.2021.00139
van de Geer, S., Bühlmann, P., Ritov, Y., Dezeure, R.: On asymptotically optimal confidence regions and tests for high-dimensional models. Ann. Stat. 42(3) (2014). https://doi.org/10.1214/14-AOS1221
Wilm, B.J., et al.: Single-shot spiral imaging enabled by an expanded encoding model: demonstration in diffusion MRI. Magn. Reson. Med. 77(1), 83–91 (2017). https://doi.org/10.1002/mrm.26493
Wilm, B.J., Barmet, C., Pavan, M., Pruessmann, K.P.: Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations. Magn. Reson. Med. 65(6), 1690–1701 (2011). https://doi.org/10.1002/mrm.22767
Winkelmann, S., Schaeffter, T., Koehler, T., Eggers, H., Doessel, O.: An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE Trans. Med. Imaging 26(1), 68–76 (2006). https://doi.org/10.1109/TMI.2006.885337
Zeng, G., et al.: A review on deep learning MRI reconstruction without fully sampled k-space. BMC Med. Imaging 21(1), 195 (2021). https://doi.org/10.1186/s12880-021-00727-9
Zhang, C.H., Zhang, S.S.: Confidence intervals for low dimensional parameters in high dimensional linear models. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 76(1), 217–242 (2014). https://doi.org/10.1111/rssb.12026
Acknowledgments
We gratefully acknowledge financial support with funds provided by the German Federal Ministry of Education and Research in the grant “SparseMRI3D+: Compressive Sensing und Quantifizierung von Unsicherheiten für die beschleunigte multiparametrische quantitative Magnetresonanztomografie (FZK 05M20WOA)” and funding by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 952172.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hoppe, F. et al. (2025). Imaging with Confidence: Uncertainty Quantification for High-Dimensional Undersampled MR Images. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15136. Springer, Cham. https://doi.org/10.1007/978-3-031-73229-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-73229-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73228-7
Online ISBN: 978-3-031-73229-4
eBook Packages: Computer ScienceComputer Science (R0)