Abstract
Weakly-Supervised Group Activity Recognition (WSGAR) aims to understand the activity performed together by a group of individuals with the video-level label and without actor-level labels. We propose Flow-Assisted Motion Learning Network (Flaming-Net) for WSGAR, which consists of the motion-aware actor encoder to extract actor features and the two-pathways relation module to infer the interaction among actors and their activity. Flaming-Net leverages an additional optical flow modality in the training stage to enhance its motion awareness when finding locally active actors. The first pathway of the relation module, the actor-centric path, initially captures the temporal dynamics of individual actors and then constructs inter-actor relationships. In parallel, the group-centric path starts by building spatial connections between actors within the same timeframe and then captures simultaneous spatio-temporal dynamics among them. We demonstrate that Flaming-Net achieves new state-of-the-art WSGAR results on two benchmarks, including a 2.8%p higher MPCA score on the NBA dataset. Importantly, we use the optical flow modality only for training and not for inference.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amer, M.R., Xie, D., Zhao, M., Todorovic, S., Zhu, S.-C.: Cost-sensitive top-down/bottom-up inference for multiscale activity recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 187–200. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_14
Amer, M.R., Lei, P., Todorovic, S.: HiRF: hierarchical random field for collective activity recognition in videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 572–585. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_37
Azar, S.M., Atigh, M.G., Nickabadi, A., Alahi, A.: Convolutional relational machine for group activity recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 7892–7901. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00808
Bagautdinov, T., Alahi, A., Fleuret, F., Fua, P., Savarese, S.: Social scene understanding: end-to-end multi-person action localization and collective activity recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chappa, N.V.S.R., et al.: SPARTAN: self-supervised spatiotemporal transformers approach to group activity recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Workshops, Vancouver, BC, Canada, 17–24 June 2023, pp. 5158–5168. IEEE (2023). https://doi.org/10.1109/CVPRW59228.2023.00544
Choi, W., Savarese, S.: A unified framework for multi-target tracking and collective activity recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 215–230. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_16
Deng, Z., Vahdat, A., Hu, H., Mori, G.: Structure inference machines: recurrent neural networks for analyzing relations in group activity recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 4772–4781. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.516
Du, Z., Wang, X., Wang, Q.: Perceiving local relative motion and global correlations for weakly supervised group activity recognition. Image Vis. Comput. 137, 104789 (2023). https://doi.org/10.1016/J.IMAVIS.2023.104789
Du, Z., Wang, X., Wang, Q.: Self-supervised global spatio-temporal interaction pre-training for group activity recognition. IEEE TCSVT 33(9), 5076–5088 (2023). https://doi.org/10.1109/TCSVT.2023.3249906
Ehsanpour, M., Abedin, A., Saleh, F., Shi, J., Reid, I., Rezatofighi, H.: Joint learning of social groups, individuals action and sub-group activities in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 177–195. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_11
Gavrilyuk, K., Sanford, R., Javan, M., Snoek, C.G.M.: Actor-transformers for group activity recognition. In: CVPR (2020)
Han, M., et al.: Dual-AI: dual-path actor interaction learning for group activity recognition. In: CVPR (2022)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969. openaccess.thecvf.com (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hu, G., Cui, B., He, Y., Yu, S.: Progressive relation learning for group activity recognition. In: CVPR (2020)
Ibrahim, M.S., Muralidharan, S., Deng, Z., Vahdat, A., Mori, G.: A hierarchical deep temporal model for group activity recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 1971–1980. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.217
Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 1647–1655. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.179
Kim, D., Lee, J., Cho, M., Kwak, S.: Detector-free weakly supervised group activity recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022, pp. 20051–20061. IEEE (2022)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980
Li, S., et al.: Groupformer: group activity recognition with clustered spatial-temporal transformer. In: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, 10–17 October 2021, pp. 13648–13657. IEEE (2021). https://doi.org/10.1109/ICCV48922.2021.01341
Li, X., Choo Chuah, M.: Sbgar: semantics based group activity recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2876–2885 (2017)
Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), 27 October–2 November 2019, pp. 7082–7092. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00718
Liu, Z., et al.: Video swin transformer. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022, pp. 3192–3201. IEEE (2022). https://doi.org/10.1109/CVPR52688.2022.00320
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)
Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 21–24 June 2010, Haifa, Israel, pp. 807–814. Omnipress (2010). https://icml.cc/Conferences/2010/papers/432.pdf
Pei, D., Huang, D., Kong, L., Wang, Y.: Key role guided transformer for group activity recognition. IEEE Trans. Circuits Syst. Video Technol. 33(12), 7803–7818 (2023). https://doi.org/10.1109/TCSVT.2023.3283282
Pramono, R.R.A., Chen, Y.T., Fang, W.H.: Empowering relational network by self-attention augmented conditional random fields for group activity recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 71–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_5
Qi, M., Wang, Y., Qin, J., Li, A., Luo, J., Gool, L.V.: stagNet: an attentive semantic RNN for group activity and individual action recognition. IEEE Trans. Circuits Syst. Video Technol. 30(2), 549–565 (2020). https://doi.org/10.1109/TCSVT.2019.2894161
Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, 7–12 December 2015, Montreal, Quebec, Canada, pp. 91–99 (2015). https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
Shu, T., Todorovic, S., Zhu, S.: CERN: confidence-energy recurrent network for group activity recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 4255–4263. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.453
Shu, T., Xie, D., Rothrock, B., Todorovic, S., Zhu, S.: Joint inference of groups, events and human roles in aerial videos. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 4576–4584. IEEE Computer Society (2015). https://doi.org/10.1109/CVPR.2015.7299088
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision (2015)
Tamura, M., Vishwakarma, R., Vennelakanti, R.: Hunting group clues with transformers for social group activity recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13664, pp. 19–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19772-7_2
Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2
Wu, J., Wang, L., Wang, L., Guo, J., Wu, G.: Learning actor relation graphs for group activity recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 9964–9974. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.01020
Wu, L., Lang, X., Xiang, Y., Chen, C., Li, Z., Wang, Z.: Active spatial positions based hierarchical relation inference for group activity recognition. IEEE TCSVT 33(6), 2839–2851 (2023). https://doi.org/10.1109/TCSVT.2022.3228731
Yan, R., Tang, J., Shu, X., Li, Z., Tian, Q.: Participation-contributed temporal dynamic model for group activity recognition. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1292–1300 (2018)
Yan, R., Xie, L., Tang, J., Shu, X., Tian, Q.: HiGCIN: hierarchical graph-based cross inference network for group activity recognition. IEEE TPAMI 45(6), 6955–6968 (2020)
Yan, R., Xie, L., Tang, J., Shu, X., Tian, Q.: Social adaptive module for weakly-supervised group activity recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 208–224. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_13
Yuan, H., Ni, D.: Learning visual context for group activity recognition. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, pp. 3261–3269. AAAI Press (2021). https://doi.org/10.1609/AAAI.V35I4.16437
Yuan, H., Ni, D., Wang, M.: Spatio-temporal dynamic inference network for group activity recognition. In: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, 10–17 October 2021, pp. 7456–7465. IEEE (2021). https://doi.org/10.1109/ICCV48922.2021.00738
Zhou, W., Kong, L., Han, Y., Qin, J., Sun, Z.: Contextualized relation predictive model for self-supervised group activity representation learning. IEEE Trans. Multimedia 26, 353–366 (2023)
Acknowledgement
This work was conducted by Center for Applied Research in Artificial Intelligence (CARAI) grant funded by DAPA and ADD (UD230017TD).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nugroho, M.A. et al. (2025). Flow-Assisted Motion Learning Network for Weakly-Supervised Group Activity Recognition. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15106. Springer, Cham. https://doi.org/10.1007/978-3-031-73195-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-73195-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73194-5
Online ISBN: 978-3-031-73195-2
eBook Packages: Computer ScienceComputer Science (R0)