Nothing Special   »   [go: up one dir, main page]

Skip to main content

Flow-Assisted Motion Learning Network for Weakly-Supervised Group Activity Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Weakly-Supervised Group Activity Recognition (WSGAR) aims to understand the activity performed together by a group of individuals with the video-level label and without actor-level labels. We propose Flow-Assisted Motion Learning Network (Flaming-Net) for WSGAR, which consists of the motion-aware actor encoder to extract actor features and the two-pathways relation module to infer the interaction among actors and their activity. Flaming-Net leverages an additional optical flow modality in the training stage to enhance its motion awareness when finding locally active actors. The first pathway of the relation module, the actor-centric path, initially captures the temporal dynamics of individual actors and then constructs inter-actor relationships. In parallel, the group-centric path starts by building spatial connections between actors within the same timeframe and then captures simultaneous spatio-temporal dynamics among them. We demonstrate that Flaming-Net achieves new state-of-the-art WSGAR results on two benchmarks, including a 2.8%p higher MPCA score on the NBA dataset. Importantly, we use the optical flow modality only for training and not for inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amer, M.R., Xie, D., Zhao, M., Todorovic, S., Zhu, S.-C.: Cost-sensitive top-down/bottom-up inference for multiscale activity recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 187–200. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_14

    Chapter  Google Scholar 

  2. Amer, M.R., Lei, P., Todorovic, S.: HiRF: hierarchical random field for collective activity recognition in videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 572–585. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_37

    Chapter  Google Scholar 

  3. Azar, S.M., Atigh, M.G., Nickabadi, A., Alahi, A.: Convolutional relational machine for group activity recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 7892–7901. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00808

  4. Bagautdinov, T., Alahi, A., Fleuret, F., Fua, P., Savarese, S.: Social scene understanding: end-to-end multi-person action localization and collective activity recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

    Google Scholar 

  5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  6. Chappa, N.V.S.R., et al.: SPARTAN: self-supervised spatiotemporal transformers approach to group activity recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Workshops, Vancouver, BC, Canada, 17–24 June 2023, pp. 5158–5168. IEEE (2023). https://doi.org/10.1109/CVPRW59228.2023.00544

  7. Choi, W., Savarese, S.: A unified framework for multi-target tracking and collective activity recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 215–230. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_16

    Chapter  Google Scholar 

  8. Deng, Z., Vahdat, A., Hu, H., Mori, G.: Structure inference machines: recurrent neural networks for analyzing relations in group activity recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 4772–4781. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.516

  9. Du, Z., Wang, X., Wang, Q.: Perceiving local relative motion and global correlations for weakly supervised group activity recognition. Image Vis. Comput. 137, 104789 (2023). https://doi.org/10.1016/J.IMAVIS.2023.104789

    Article  Google Scholar 

  10. Du, Z., Wang, X., Wang, Q.: Self-supervised global spatio-temporal interaction pre-training for group activity recognition. IEEE TCSVT 33(9), 5076–5088 (2023). https://doi.org/10.1109/TCSVT.2023.3249906

    Article  Google Scholar 

  11. Ehsanpour, M., Abedin, A., Saleh, F., Shi, J., Reid, I., Rezatofighi, H.: Joint learning of social groups, individuals action and sub-group activities in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 177–195. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_11

    Chapter  Google Scholar 

  12. Gavrilyuk, K., Sanford, R., Javan, M., Snoek, C.G.M.: Actor-transformers for group activity recognition. In: CVPR (2020)

    Google Scholar 

  13. Han, M., et al.: Dual-AI: dual-path actor interaction learning for group activity recognition. In: CVPR (2022)

    Google Scholar 

  14. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969. openaccess.thecvf.com (2017)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Hu, G., Cui, B., He, Y., Yu, S.: Progressive relation learning for group activity recognition. In: CVPR (2020)

    Google Scholar 

  17. Ibrahim, M.S., Muralidharan, S., Deng, Z., Vahdat, A., Mori, G.: A hierarchical deep temporal model for group activity recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 1971–1980. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.217

  18. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 1647–1655. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.179

  19. Kim, D., Lee, J., Cho, M., Kwak, S.: Detector-free weakly supervised group activity recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022, pp. 20051–20061. IEEE (2022)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980

  21. Li, S., et al.: Groupformer: group activity recognition with clustered spatial-temporal transformer. In: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, 10–17 October 2021, pp. 13648–13657. IEEE (2021). https://doi.org/10.1109/ICCV48922.2021.01341

  22. Li, X., Choo Chuah, M.: Sbgar: semantics based group activity recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2876–2885 (2017)

    Google Scholar 

  23. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), 27 October–2 November 2019, pp. 7082–7092. IEEE (2019). https://doi.org/10.1109/ICCV.2019.00718

  24. Liu, Z., et al.: Video swin transformer. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, 18–24 June 2022, pp. 3192–3201. IEEE (2022). https://doi.org/10.1109/CVPR52688.2022.00320

  25. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  26. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 21–24 June 2010, Haifa, Israel, pp. 807–814. Omnipress (2010). https://icml.cc/Conferences/2010/papers/432.pdf

  27. Pei, D., Huang, D., Kong, L., Wang, Y.: Key role guided transformer for group activity recognition. IEEE Trans. Circuits Syst. Video Technol. 33(12), 7803–7818 (2023). https://doi.org/10.1109/TCSVT.2023.3283282

    Article  Google Scholar 

  28. Pramono, R.R.A., Chen, Y.T., Fang, W.H.: Empowering relational network by self-attention augmented conditional random fields for group activity recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 71–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_5

    Chapter  Google Scholar 

  29. Qi, M., Wang, Y., Qin, J., Li, A., Luo, J., Gool, L.V.: stagNet: an attentive semantic RNN for group activity and individual action recognition. IEEE Trans. Circuits Syst. Video Technol. 30(2), 549–565 (2020). https://doi.org/10.1109/TCSVT.2019.2894161

    Article  Google Scholar 

  30. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, 7–12 December 2015, Montreal, Quebec, Canada, pp. 91–99 (2015). https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html

  31. Shu, T., Todorovic, S., Zhu, S.: CERN: confidence-energy recurrent network for group activity recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 4255–4263. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.453

  32. Shu, T., Xie, D., Rothrock, B., Todorovic, S., Zhu, S.: Joint inference of groups, events and human roles in aerial videos. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 4576–4584. IEEE Computer Society (2015). https://doi.org/10.1109/CVPR.2015.7299088

  33. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision (2015)

    Google Scholar 

  34. Tamura, M., Vishwakarma, R., Vennelakanti, R.: Hunting group clues with transformers for social group activity recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13664, pp. 19–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19772-7_2

    Chapter  Google Scholar 

  35. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  36. Wu, J., Wang, L., Wang, L., Guo, J., Wu, G.: Learning actor relation graphs for group activity recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 9964–9974. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.01020

  37. Wu, L., Lang, X., Xiang, Y., Chen, C., Li, Z., Wang, Z.: Active spatial positions based hierarchical relation inference for group activity recognition. IEEE TCSVT 33(6), 2839–2851 (2023). https://doi.org/10.1109/TCSVT.2022.3228731

    Article  Google Scholar 

  38. Yan, R., Tang, J., Shu, X., Li, Z., Tian, Q.: Participation-contributed temporal dynamic model for group activity recognition. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1292–1300 (2018)

    Google Scholar 

  39. Yan, R., Xie, L., Tang, J., Shu, X., Tian, Q.: HiGCIN: hierarchical graph-based cross inference network for group activity recognition. IEEE TPAMI 45(6), 6955–6968 (2020)

    Article  Google Scholar 

  40. Yan, R., Xie, L., Tang, J., Shu, X., Tian, Q.: Social adaptive module for weakly-supervised group activity recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 208–224. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_13

    Chapter  Google Scholar 

  41. Yuan, H., Ni, D.: Learning visual context for group activity recognition. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, pp. 3261–3269. AAAI Press (2021). https://doi.org/10.1609/AAAI.V35I4.16437

  42. Yuan, H., Ni, D., Wang, M.: Spatio-temporal dynamic inference network for group activity recognition. In: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, 10–17 October 2021, pp. 7456–7465. IEEE (2021). https://doi.org/10.1109/ICCV48922.2021.00738

  43. Zhou, W., Kong, L., Han, Y., Qin, J., Sun, Z.: Contextualized relation predictive model for self-supervised group activity representation learning. IEEE Trans. Multimedia 26, 353–366 (2023)

    Article  Google Scholar 

Download references

Acknowledgement

This work was conducted by Center for Applied Research in Artificial Intelligence (CARAI) grant funded by DAPA and ADD (UD230017TD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Adi Nugroho .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3560 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nugroho, M.A. et al. (2025). Flow-Assisted Motion Learning Network for Weakly-Supervised Group Activity Recognition. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15106. Springer, Cham. https://doi.org/10.1007/978-3-031-73195-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73195-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73194-5

  • Online ISBN: 978-3-031-73195-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics