Nothing Special   »   [go: up one dir, main page]

Skip to main content

Holistic Consistency for Subject-Level Segmentation Quality Assessment in Medical Image Segmentation

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15167))

  • 49 Accesses

Abstract

A reliable/trustworthy image segmentation pipeline plays a central role in deploying AI medical image analysis systems in clinical practice. Given a segmentation map produced by a segmentation model, it is desired to have an automatic, accurate, and reliable method in the pipeline for segmentation quality assessment (SQA) when the ground truth is absent. In this paper, we present a novel holistic consistency based method for assessing at the subject-level the quality of segmentation produced by state-of-the-art segmentation models. Our method does not train a dedicated model using labeled samples to assess segmentation quality; instead, it systematically explores the segmentation consistency in an unsupervised manner. Our approach examines the consistency of segmentation results across three major aspects: (1) consistency across sub-models; (2) consistency across models; (3) consistency across different runs with random dropouts. For a given test image, combining consistency scores from the above mentioned aspects, we can generate an overall consistency score that is highly correlated with the true segmentation quality score (e.g., Dice score) in both linear correlation and rank correlation. Empirical results on two public datasets demonstrate that our proposed method outperforms previous unsupervised methods for subject-level SQA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Audelan, B., Delingette, H.: Unsupervised quality control of segmentations based on a smoothness and intensity probabilistic model. Med. Image Anal. 68, 101895 (2021)

    Article  Google Scholar 

  2. Bilic, P., et al.: The Liver tumor segmentation benchmark (LiTS). Med. Image Anal. 84, 102680 (2023). https://doi.org/10.1016/j.media.2022.102680

    Article  Google Scholar 

  3. Chen, H., Murphy, R.F.: Evaluation of cell segmentation methods without reference segmentations. Mol. Biol. Cell. 34(6), ar50 (2023)

    Google Scholar 

  4. Colleoni, E., Edwards, P., Stoyanov, D.: Synthetic and real inputs for tool segmentation in robotic surgery. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part III, pp. 700–710. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_67

    Chapter  Google Scholar 

  5. DeVries, T., Taylor, G.W.: Leveraging uncertainty estimates for predicting segmentation quality. arXiv preprint arXiv:1807.00502 (2018)

  6. Dong, B., Wang, W., Fan, D.-P., Li, J., Fu, H., Shao, L.: Polyp-PVT: polyp segmentation with pyramid vision Transformers. arXiv preprint arXiv:2108.06932 (2021)

  7. Fan, D.-P.: Official code of Polyp-PVT for polyp segmentation in endoscopic images. https://github.com/DengPingFan/Polyp-PVT/

  8. Fan, D.-P., et al.: PraNet: parallel reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI, pp. 263–273. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_26

    Chapter  Google Scholar 

  9. Fan, D.-P., et al.: Inf-Net: automatic COVID-19 lung infection segmentation from CT images. IEEE Trans. Med. Imaging 39(8), 2626–2637 (2020)

    Article  Google Scholar 

  10. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML, pp. 1050–1059. PMLR (2016)

    Google Scholar 

  11. Huang, C., Wu, Q., Meng, F.: QualityNet: segmentation quality evaluation with deep convolutional networks. In: 2016 Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2016)

    Google Scholar 

  12. Jungo, A., Reyes, M.: Assessing reliability and challenges of uncertainty estimations for medical image segmentation. In: MICCAI, pp. 48–56. Springer (2019). https://doi.org/10.1007/978-3-030-32245-8_6

  13. Kushibar, K., Campello, V., Garrucho, L., Linardos, A., Radeva, P., Lekadir, K.: Layer Ensembles: a single-pass uncertainty estimation in deep learning for segmentation. In: MICCAI, pp. 514–524. Springer (2022). https://doi.org/10.1007/978-3-031-16452-1_49

  14. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  15. Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Artificial Intelligence and Statistics, pp. 562–570. PMLR (2015)

    Google Scholar 

  16. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  17. Rahman, Q.M., Sünderhauf, N., Corke, P., Dayoub, F.: FSNet: a failure detection framework for semantic segmentation. IEEE Robot. Autom. Lett. 7(2), 3030–3037 (2022)

    Article  Google Scholar 

  18. Robinson, R., et al.: Real-time prediction of segmentation quality. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part IV, pp. 578–585. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_66

    Chapter  Google Scholar 

  19. Rottmann, M., et al.: Prediction error meta classification in semantic segmentation: detection via aggregated dispersion measures of softmax probabilities. In: IJCNN, pp. 1–9. IEEE (2020)

    Google Scholar 

  20. Sedgwick, P.: Pearson’s correlation coefficient. The BMJ, 345 (2012)

    Google Scholar 

  21. Valindria, V.V., et al.: Reverse classification accuracy: predicting segmentation performance in the absence of ground truth. IEEE Trans. Med. Imaging. 36(8), 1597–1606 (2017)

    Google Scholar 

  22. Zar, J.H.: Spearman rank correlation. Encyclopedia Biostat., 7 (2005)

    Google Scholar 

  23. Zhang. W.: Official code of HSNet for polyp segmentation in endoscopic images. https://github.com/baiboat/HSNet/

  24. Zhang, W.: Official Code of Inf-Net for lung infection segmentation in CT images. https://github.com/DengPingFan/Inf-Net/

  25. Zhang, W., Chong, F., Zheng, Yu., Zhang, F., Zhao, Y., Sham, C.-W.: HSNet: a hybrid semantic network for polyp segmentation. Comput. Biol. Med. 150, 106173 (2022)

    Google Scholar 

  26. Zhou, L., Deng, W., Wu, X.: Robust image segmentation quality assessment. In: Medical Imaging with Deep Learning (2020)

    Google Scholar 

Download references

Acknowledgments

We sincerely thank the reviewers for their time and effort in reviewing our manuscript and for providing constructive feedback to improve our work. This research was supported in part by the Natural Science Foundation of Jiangsu Province (Grant BK20220949), and National Natural Science Foundation of China (Grant 62201263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhe Zhang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to decalre.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Zhou, T., Chen, Q., Dou, Q., Wang, S. (2025). Holistic Consistency for Subject-Level Segmentation Quality Assessment in Medical Image Segmentation. In: Sudre, C.H., Mehta, R., Ouyang, C., Qin, C., Rakic, M., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2024. Lecture Notes in Computer Science, vol 15167. Springer, Cham. https://doi.org/10.1007/978-3-031-73158-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73158-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73157-0

  • Online ISBN: 978-3-031-73158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics