Nothing Special   »   [go: up one dir, main page]

Skip to main content

Information Bottleneck-Based Feature Weighting for Enhanced Medical Image Out-of-Distribution Detection

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2024)

Abstract

Deep learning models are subject to failure when inferring upon out-of-distribution (OOD) data, i.e., data that differs from the models’ train data. Within medical image settings, OOD data can be subtle and non-obvious to the human observer. Thus, developing highly sensitive algorithms is critical to automatically detect medical image OOD data. Previous works have demonstrated the utility of using the distance between embedded train and test features as an OOD measure. These methods, however, do not consider variations in feature importance to the prediction task, treating all features equally. In this work, we propose a method to enhance distance-based OOD measures via feature importance weighting, which is determined through an information bottleneck optimization process. We demonstrate the utility of the weighted OOD measure within the metastatic liver tumor segmentation task and compare its performance to its non-weighted counterpart in two assessments. The weighted OOD measure enhanced the detection of artificially perturbed data, where greater benefit was observed for smaller perturbations (e.g., AUC = 0.8 vs. AUC = 0.72). In addition, the weighted OOD measure achieved better correlation to liver tumor segmentation Dice coefficient (e.g., ρ = −0.76 vs ρ = −0.21). In summary, this work demonstrates the benefit of feature importance weighting for distance-based OOD detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Additional figures supporting these results are included as supplementary material.

References

  1. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: CVPR, pp. 427–436 (2015)

    Google Scholar 

  2. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)

    Google Scholar 

  3. Soin, A., et al.: CheXstray: real-time multi-modal data concordance for drift detection in medical imaging AI. arXiv. arXiv:2202.02833. (2022)

  4. Kelly, C.J., Karthikesalingam, A., Suleyman, M., Corrado, G., King, D.: Key challenges for delivering clinical impact with artificial intelligence. In: BMC Med, vol. 17, (2019). https://doi.org/10.1186/s12916-019-1426-2

  5. Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: a survey. arXiv. arXiv:2110.11334. (2021)

  6. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. In: ICLR (2018)

    Google Scholar 

  7. Huang, R., Geng, A., Li, Y.: On the importance of gradients for detecting distributional shifts in the wild. In: NeurIPS (2021)

    Google Scholar 

  8. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning Zoubin Ghahramani. In: ICML (2016)

    Google Scholar 

  9. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NeurIPS (2017)

    Google Scholar 

  10. Nalisnick, E., Matsukawa, A., Teh, Y.W., Gorur, D., Lakshminarayanan, B.: Do deep generative models know what they don’t know? In: ICLR (2019)

    Google Scholar 

  11. Meissen, F., Wiestler, B., Kaissis, G., Rueckert, D.: On the pitfalls of using the residual error as anomaly score. In: MIDL (2022)

    Google Scholar 

  12. Denouden, T., Salay, R., Czarnecki, K., Abdelzad, V., Phan, B., Vernekar, S.: Improving reconstruction autoencoder out-of-distribution detection with mahalanobis distance. arXiv. arXiv:1812.02765. (2018)

  13. Huang, H., Li, Z., Wang, L., Chen, S., Dong, B., Zhou, X.: Feature space singularity for out-of-distribution detection. arXiv. arXiv:2011.14654. (2020)

  14. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: NeurIPS (2018)

    Google Scholar 

  15. Sun, Y., Ming, Y., Zhu, X., Li, Y.: Out-of-distribution detection with deep nearest neighbors. In: ICML (2022)

    Google Scholar 

  16. González, C., et al.: Distance-based detection of out-of-distribution silent failures for Covid-19 lung lesion segmentation. Med Image Anal. 82 (2022). https://doi.org/10.1016/j.media.2022.102596

  17. Karimi, D., Gholipour, A.: Improving calibration and out-of-distribution detection in deep models for medical image segmentation. IEEE Trans. Artif. Intell. 4, 383–397 (2023). https://doi.org/10.1109/TAI.2022.3159510

    Article  Google Scholar 

  18. Samek, W., Wiegand, T., Müller, K.-R.: Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. arXiv. arXiv:1708.08296. (2017)

  19. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv. arXiv:physics/0004057. (2000)

  20. Zhmoginov, A., Fischer, I., Sandler, M.: Information-bottleneck approach to salient region discovery. In: ECML PKDD (2020)

    Google Scholar 

  21. Schulz, K., Sixt, L., Tombari, F., Landgraf, T.: Restricting the flow: information bottlenecks for attribution. In: ICLR (2020)

    Google Scholar 

  22. Alemi, A.A., Fischer, I., Dillon, J. V., Murphy, K.: Deep variational information bottleneck. In: ICLR (2017)

    Google Scholar 

  23. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: NeurIPS (2017)

    Google Scholar 

  24. Bilic, P., Christ, P., Li, H.B., Vorontsov, E., Ben-Cohen, A., Kaissis, et al.: The liver tumor segmentation benchmark (LiTS). Med Image Anal. 84 (2023). https://doi.org/10.1016/j.media.2022.102680

  25. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: NnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  26. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)

    Google Scholar 

  27. Schwaiger, A., Sinhamahapatra, P., Gansloser, J., Roscher, K.: Is Uncertainty quantification in deep learning sufficient for out-of-distribution detection? In: AISafety@IJCAI (2020)

    Google Scholar 

  28. Ovadia, Y., et al.: Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset shift. In: NeurIPS (2019)

    Google Scholar 

  29. Liu, Y., Pagliardini, M., Chavdarova, T., Stich, S.U.: The peril of popular deep learning uncertainty estimation methods. In: NeurIPS (2021)

    Google Scholar 

  30. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: ICDT (2001)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the University of Wisconsin Carbone Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brayden Schott .

Editor information

Editors and Affiliations

Ethics declarations

Author Robert Jeraj, PhD is the Chief Scientific Officer and a co-founder of AIQ Solutions, a quantitative medical image analysis software company.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 203 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schott, B. et al. (2025). Information Bottleneck-Based Feature Weighting for Enhanced Medical Image Out-of-Distribution Detection. In: Sudre, C.H., Mehta, R., Ouyang, C., Qin, C., Rakic, M., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2024. Lecture Notes in Computer Science, vol 15167. Springer, Cham. https://doi.org/10.1007/978-3-031-73158-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73158-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73157-0

  • Online ISBN: 978-3-031-73158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics