Nothing Special   »   [go: up one dir, main page]

Skip to main content

Exploring Women-Centric Health Technology Design: A Scoping Review

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2024, Volume 4 (FTC 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1157))

Included in the following conference series:

  • 120 Accesses

Abstract

The United Nations’ third Sustainable Development Goal (SDG) emphasizes the importance of ensuring sustainable healthcare for all. Women constitute half the global population, so they are a crucial demographic for researchers seeking to improve access to digital healthcare services. This study presents a comprehensive review of research conducted in the previous ten years that specifically examines the development of health technologies targeted towards women. Using the PRISMA framework to guide our analysis, we have synthesized relevant studies to extract insights into the tools and research methodologies. Our findings reveal that user-centered design is the most prevalent methodology among the approaches identified in the literature we evaluated. Also, maternal health emerged as a prominent area of concentration, with more than 50% of the examined studies focusing on it. This analysis provides valuable insights to inform future research on developing support technologies specifically designed for women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abid, A., Shahid, S.: Helping pregnant women in the rural areas of Pakistan using a low-cost interactive system (2017). https://doi.org/10.1145/3136560.3136607

  2. Abujarad, F., et al.: Building a digital health risk calculator for older women with early-stage breast cancer. In: Soares, M.M., Rosenzweig, E., Marcus, A. (eds.) HCII 2021. LNCS, vol. 12780, pp. 389–402. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78224-5_27

    Chapter  Google Scholar 

  3. Afrizal, S.H., Hidayanto, A.N., Hakiem, N., Sartono, A., Priyambodo, S., Eryando, T.: Design of mHealth application for integrating antenatal care service in primary health care: a user-centered approach, pp. 1–6 (2019).https://doi.org/10.1109/ICIC47613.2019.8985911

  4. Ahmad, K., Ricci, L.E.M., Baiardi, F., Arsheen, S.: Hyperledger fabric enabled vaccine intelligent network to implement immunization program (2023). https://doi.org/10.1109/CSNT57126.2023.10134692

  5. Akinseinde, A.S., Badejo, J.A., Malgwi, R.L.: GRAVID: an indigenous m-health tool for smart and connected communities. In: 2016 Future Technologies Conference (FTC), pp. 1331–334 (2016). https://doi.org/10.1109/FTC.2016.7821776

  6. Al-Hagree, S., et al.: Decision tree-based smart system for pregnant women diagnosis (2022). https://doi.org/10.1109/ITSS-IoE56359.2022.9990953

  7. Alsabti, H., Al Omari, O., Al Nasseri, Y., Al Hashmi, I., Khalaf, A.: Development, feasibility, and acceptability of a self-efficacy-enhancing smartphone application among pregnant women with gestational diabetes mellitus: single-arm pilot clinical trial. BMC Pregnancy Childbirth 22, 358 (2022). https://doi.org/10.1186/s12884-022-04684-1

    Article  Google Scholar 

  8. Al Mahmud, A., Keyson, D.V.: Designing with Midwives: improving prenatal care in low resource regions. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, Italy, pp. 180–183 (2013). https://doi.org/10.4108/icst.pervasivehealth.2013.252032

  9. Alotaibi, M., Alsinan, A.: A mobile Polycystic ovarian syndrome management and awareness system for Gulf countries: system architecture. In: 2016 SAI Computing Conference (AI), pp. 1164–1167 (2016). https://doi.org/10.1109/SAI.2016.7556124

  10. Anggraini, R.N.E., Sianipar, F.Y., Soedjono, A.R., Rochimah, S.: Infant and pregnancy encyclopedia application. In: CEI, Fuzhou, China, pp. 253–257 (2015). https://doi.org/10.1109/CEI52496.2021.9574496

  11. Aruhan: A medical support application for public based on convolutional neural network to detect skin cancer. In: 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (EI), pp. 253–257 (2021). https://doi.org/10.1109/CEI52496.2021.9574496

  12. Arunkumar, P., Abarna, K., Nagamithra, N., Suweatha, G., Varssha, P.: Application using machine learning to promote women’s personal health (2023)

    Google Scholar 

  13. Stewart, H., Hutton, D., Evans, K., Ashmore, L.A.: Digital support for living with and beyond gynecological cancer (2020). https://doi.org/10.1016/j.radi.2020.03.014

  14. Atukunda, E.C., et al.: mHealth-based health promotion intervention to improve use of maternity care services among women in rural southwestern Uganda: iterative development study (2021)

    Google Scholar 

  15. Badriyah, T., Fauzyah, R., Syarif, I., Kristalina, P.: Mobile personal health record (mPHR) for Breast Cancer using prediction modeling. In: 2017 Second International Conference on Informatics and Computing (ICIC), pp. 1–4 (2017). https://doi.org/10.1109/IAC.2017.8280639

  16. Bautista, J.M., Quiwa, Q.A.I., Reyes, R.S.J.: Machine learning analysis for remote prenatal care, pp. 397–402. IEEE, Piscataway (2020). https://ieeexplore.ieee.org/document/9293890

  17. Besral, B., Misrawati, M., Afiyanti, Y., Ismail, R.I., Arifin, H.: MIESRA mHealth: marital satisfaction during pregnancy. PLoS ONE 18, 1–15 (2023). https://doi.org/10.1371/journal.pone.0289061

    Article  Google Scholar 

  18. Bilotti, C., Lucena, T.F.R., Rodrigues, S.A., Bernuci, M.P.: Sketching a mHealth based system to improve breast cancer prevention. In: 2017 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), pp. 1–5 (2017). https://doi.org/10.1109/GMEPE-PAHCE.2017.7972089

  19. Blazey, M., et al.: Designing a dyad-based digital health intervention to reduce sedentary time in black breast cancer survivors and their first-degree relatives: human-centered design study (2023)

    Google Scholar 

  20. Blewitt, C., et al.: Using intervention mapping to develop a workplace digital health intervention for preconception, pregnant, and postpartum women: the Health in Planning, Pregnancy and Postpartum (HiPPP) portal (2022)

    Google Scholar 

  21. Bohorquez, J., McKinney, J., Keyser, L., Sutherland, R., Pulliam, S.J.: Development of a wireless accelerometer-based Intravaginal device to detect pelvic floor motion for evaluation of pelvic floor dysfunction. Biomed. Microdevice 22(2), 1–8 (2020). https://doi.org/10.1007/s10544-020-00479-3

    Article  Google Scholar 

  22. Bonful, H.A., et al.: Developing a culturally tailored short message service (SMS) intervention for improving the uptake of cervical cancer screening among Ghanaian women in urban communities. BMC Women’s Health 22(1), 154 (2022). https://www.ncbi.nlm.nih.gov/pubmed/35538476

  23. Bucher, A., Blazek, E.S., West, A.B.: Feasibility of a reinforcement learning-enabled digital health intervention to promote mammograms: retrospective, single-arm, observational study. JMIR Formative Res. 6(11), e42343 (2022). https://www.ncbi.nlm.nih.gov/pubmed/36441579

  24. Chaudhry, B., Faust, L., Chawla, N.: From design to development to evaluation of a pregnancy app for low-income women in a community-based setting, pp. 1–11. ACM (2019). https://doi.org/10.1145/3338286.3340118

  25. Chauhan, P., Patil, P., Rane, N., Raundale, P., Kanakia, H.: Comparative analysis of machine learning algorithms for prediction of PCOS, pp. 1–7. IEEE (2021). https://doi.org/10.1109/ICCICT50803.2021.9510128

  26. Da Silva Costa, S.W., et al.: WHOT, a novel tool to assist women victims of violence: a case study in the Brazilian amazon. IEEE Access 9, 95046–95060 (2021). https://doi.org/10.1109/ACCESS.2021.3090747. Conference Acronym ’XX, Woodstock, NY, Anon, 03–05 June 2018

  27. da Cruz, F.O.A.M., Faria, E.T., Ghobad, P.C., Alves, L.Y.M., dos Reis, P.E.D.: A mobile app (AMOR Mama) for women with breast cancer undergoing radiation therapy: functionality and usability study. J. Med. Internet Res. 23(10), e24865 (2021). https://doi.org/10.2196/24865

    Article  Google Scholar 

  28. Delmaifanis, D., Siregar, K., Prabawa, A.: mHealth conceptual model for providing quality antenatal care in health centers during the coronavirus disease 2019 pandemic. Open Access Maced. J. Med. Sci. 9, 828–834 (2021). https://oamjms.eu/index.php/mjms/article/download/7061/6060

  29. DeRenzi, B., et al.: Closing the feedback loop: a 12-month evaluation of ASTA, a self-tracking application for ASHAs. In: Proceedings of the Eighth International Conference on Information and Communication Technologies and Development (ICTD 2016), pp. 1–10. Association for Computing Machinery, New York (2016). Article 22. https://doi.org/10.1145/2909609.2909652

  30. Doherty, K., et al.: A mobile app for the self-report of psychological well-being during pregnancy (BrightSelf): qualitative design study. JMIR Ment. Health 5(4), e10007 (2018). https://www.ncbi.nlm.nih.gov/pubmed/30482742

  31. Dunsmuir, D.T., et al.: Development of mHealth applications for pre-eclampsia triage. IEEE J. Biomed. Health Inform. 18(6), 1857–1864 (2014). https://doi.org/10.1109/JBHI.2014.2301156

    Article  Google Scholar 

  32. Eaves, E.R., et al.: Applying user-centered design in the development of a supportive mHealth app for women in substance use recovery (2023). https://doi.org/10.1177/08901171221113834

  33. El Ayadi, A.M., et al.: A mobile education and social support group intervention for improving postpartum health in northern India: development and usability study. JMIR Formative Res. 6(6), e34087 (2022). https://search.proquest.com/docview/2682568049

  34. Faizzati, M., Arifiansyah, F.: Interaction design of fertility tracking application using user-centered design. The Institute of Electrical and Electronics Engineers, Inc. (IEEE), Piscataway (2022). https://search.proquest.com/docview/2754960342

  35. Faried, A., et al.: Mother and children health reporting system: innovative information system application in the rural West Bandung Area, Indonesia, by using multimodal communications systems, pp. 202–207. IEEE (2015). https://ieeexplore.ieee.org/document/7401363

  36. Gbadamosi, S.O., et al.: A patient-held smartcard with a unique identifier and an mHealth platform to improve the availability of prenatal test results in rural Nigeria: demonstration study. J. Med. Internet Res. 20(1), e18 (2018). https://www.ncbi.nlm.nih.gov/pubmed/29335234

  37. George, K., Rowe, J., Barnes, M., Kearney, L.: The Parenting Premmies Support Program: Designing and developing a mobile health intervention for mothers of preterm infants. Cogent Soc. Sci. 7(1) (2021). https://doi.org/10.1080/23311886.2020.1865617

  38. Giacobbi Jr, P., Hingle, M., Johnson, T., Cunningham, J.K., Armin, J., Gordon, J.S.: See me smoke-free: protocol for a research study to develop and test the feasibility of an mHealth app for women to address smoking, diet, and physical activity. JMIR Res. Protoc. 5(1), e12 (2016). https://www.ncbi.nlm.nih.gov/pubmed/26795257

  39. Gill, R.K., Ogilvie, G., Norman, W.V., Fitzsimmons, B., Maher, C., Renner, R.: Feasibility and acceptability of a mobile technology intervention to support postabortion care (the FACTS study phase II) after surgical abortion: user-centered design. JMIR Hum. Factors 6(4), e14558 (2019). https://www.ncbi.nlm.nih.gov/pubmed/31603429

  40. Gu, B.-D., Yang, J.-J., Li, J.-Q., Wang, Q., Niu, Y.: Using knowledge management and mHealth in high-risk pregnancy care: a case for the floating population in China. In: 2014 IEEE 38th International Computer Software and Applications Conference Workshops, pp. 678–683 (2014). https://doi.org/10.1109/COMPSACW.2014.114

  41. Halili, L., Liu, R., Hutchinson, K.A., Semeniuk, K., Redman, L.M., Adamo, K.B.: Development and pilot evaluation of a pregnancy-specific mobile health tool: a qualitative investigation of SmartMoms Canada. BMC Med. Inform. Decis. Making 18(1), 95 (2018). https://doi.org/10.1186/s12911-018-0705-8. PMID: 30419896. PMCID: PMC6233512

  42. Hou, I.-C., et al.: The development of a mobile health app for breast cancer self-management support in Taiwan: design thinking approach. JMIR Mhealth Uhealth 8(4), e15780 (2020). https://doi.org/10.2196/15780. PMID: 32352390. PMCID: PMC7226037

  43. Husain, A.M., Hassan, T.: Localizing pregnant women and newborns in rural areas and bridging the health care gap. In: 2016 19th International Conference on Computer and Information Technology (ICIT), pp. 546–549 (2016). https://doi.org/10.1109/ICCITECHN.2016.7860257

  44. Irawan, Y.S., et al.: Towards sustainable mHealth applications for maternal and child health: the case of Sahabat Bundaku - an integrated mobile application for mothers and midwives. In: 2016 IEEE Region 10 Conference (TENCON), pp. 3270–3274 (2016). https://doi.org/10.1109/TENCON.2016.7848656

  45. Isaacs, K.R., et al.: Usability and acceptability testing of a plan of safe care in a mobile health platform (2023)

    Google Scholar 

  46. Ismail, M., Nordin, S.: Development of multimedia application using TPACK framework, pp. 6–51. IEEE (2021). https://ieeexplore.ieee.org/document/9498085

  47. Iwaya, L.H., et al.: Early Labour App: developing a practice-based mobile health application for digital early labour support. Int. J. Med. Inform. 177, 105139 (2023)

    Article  Google Scholar 

  48. Jaffar, A., et al.: Feasibility and usability of kegel exercise pregnancy training app (KEPT app) among pregnant women with urinary incontinence (2022)

    Google Scholar 

  49. Jiménez-Serrano, S., Tortajada, S., García-Gómez, J.M.: A mobile health application to predict postpartum depression based on machine learning. Telemedicine e-Health 21(7), 567–574 (2015). https://doi.org/10.1089/tmj.2014.0113

    Article  Google Scholar 

  50. Johnson, A.K., et al.: An mHealth intervention to improve pre-exposure prophylaxis knowledge among young black women in family planning clinics: development and usability study. JMIR Formative Res. 6(7), e37738 (2022)

    Article  Google Scholar 

  51. Jonas, S.M., Deserno, T.M., Buhimschi, C.S., Makin, J., Choma, M.A., Buhimschi, I.A.: Smartphone-based diagnostic for preeclampsia: an mHealth solution for administering the Congo Red Dot (CRD) test in settings with limited resources. J. Am. Med. Inform. Assoc. (JAMIA) 23(1), 166–173 (2016). https://www.ncbi.nlm.nih.gov/pubmed/26026158

  52. Kadarina, T.M., Priambodo, R.: Preliminary design of Internet of Things (IoT) application for supporting mother and child health program in Indonesia. In: 2017 International Conference on Broadband Communication, Wireless Sensors and Powering (BCWSP), pp. 1–6 (2017). https://doi.org/10.1109/BCWSP.2017.8272576

  53. Katusiime, J., Pinkwart, N.: Supporting maternal health education in developing countries using mobile phones-results of a pilot study. In: AfriCHI 2016, pp. 48–57. ACM (2016)

    Google Scholar 

  54. Kavitha, M., Venkata Krishna, P., Rama Krishna, V., Digavinti, S., Kalyani, M., Naga Divya, T.V.S.: Android-based recommender system (ARS) to detect breast abnormalities (2022)

    Google Scholar 

  55. Kayastha, R., et al.: Do women in Nepal like playing a mobile game? MANTRA: a mobile gamified app for improving healthcare seeking behavior in rural Nepal (2021)

    Google Scholar 

  56. Khan, F., Das, M., Ahammed, A.: PurpleAid: an mHealth platform to combat health hazards of women. In: 2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec), pp. 1–6 (2016). https://doi.org/10.1109/MEDITEC.2016.7835368

  57. Khanom, N., Miah, S.J.: On-cloud motherhood clinic: a healthcare management solution for rural communities in developing countries. Pac. Asia J. Assoc. Inf. Syst. 12(1), 1–85 (2020). https://search.proquest.com/docview/2499400549

  58. Kimei, E., Kalegele, K.: Digitization of antenatal health card and integration with OpenMRS platform: system analysis and design. In: 2017 IST-Africa Week Conference (IST-Africa), pp. 1–7 (2017). https://doi.org/10.23919/ISTAFRICA.2017.8101976

  59. Kongjit, C., Nimmolrat, A., Khamaksorn, A.: Mobile health application for Thai women: investigation and model. BMC Med. Inform. Decis. Making 22(1), 202 (2022). https://doi.org/10.1186/s12911-022-01944-0

    Article  Google Scholar 

  60. Kugapriya, P., Manohara, M., Ranganathan, K., Kanapathy, D., Gamage, A., Anzar, A.: UNWIND - a mobile application that provides emotional support for working women. In: 2022 2nd Asian Conference on Innovation in Technology (ASIA CON), pp. 1–7 (2022). https://doi.org/10.1109/ASIANCON55314.2022.9909084

  61. Kurniawan, R., Siregar, K.N., Martiana, N.S., Wardhani, I.K.: mHealth development for village midwives to improve the performance of the maternal health program in the Babakan Madang Sub-District, Bogor, Indonesia. Indian J. Public Health Res. Dev. 10(7), 981 (2019)

    Article  Google Scholar 

  62. Lee, M., Koo, B., Jeong, H., Park, J., Cho, J., Cho, J.: Understanding women’s needs in menopause for development of mHealth, pp. 51–56. ACM (2015)

    Google Scholar 

  63. Lu, X., Chen, D., Ma, S.: Design of a STM32 based portable system for postpartum recovery. In: Proceedings of the 6th International Conference on Biomedical Engineering and Applications (ICBEA 2022), pp. 6–14. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3543081.3543083

  64. Macdonell, K.K., et al.: Optimizing an mHealth intervention to improve uptake and adherence to HIV pre-exposure prophylaxis in young transgender women: protocol for a multi-phase trial (2022)

    Google Scholar 

  65. Macrohon, J., Balan, A., Fuentes, G., De Goma, J.: Development of a maternal health system for remote areas. In: ICSEB 2019, pp. 4–38. ACM (2019). https://doi.org/10.1145/3374549.3374575

  66. Mahmud, S.R., Maowa, J., Wibowo, F.W.: Women empowerment: one stop solution for women. In: 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICIT SEE), pp. 485–489 (2017). https://doi.org/10.1109/ICITISEE.2017.8285555

  67. Maitra, A., Kuntagod, N.: A novel mobile application to assist maternal health workers in rural India. In: SEHC 2013, pp. 75–78. IEEE Press (2013)

    Google Scholar 

  68. Martono, K.T., Dharmawan, Y.: The role of management information system in data surveillance of maternal and child health, pp. 107–112. IEEE (2015). https://ieeexplore.ieee.org/document/7437780

  69. Mburu, S.: A predictive model for optimizing acceptance and use of mHealth interventions in low-resource settings: a case of Mamacare prototype. In: 2017 IEEE AFRICON, pp. 518–523 (2017). https://doi.org/10.1109/AFRCON.2017.8095535

  70. McBride, B., O’Neil, J.D., Hue, T.T., Eni, R., Nguyen, C.V., Nguyen, L.T.: Improving health equity for ethnic minority women in Thai Nguyen, Vietnam: qualitative results from an mHealth intervention targeting maternal and infant health service access. J. Public Health (2018). https://doi.org/10.1093/pubmed/fdy165

  71. Meedya, S., et al.: Developing and testing a mobile application for breastfeeding support: the Milky Way application. Women Birth J. Aust. Coll. Midwives 34(2), e196–e203 (2021). https://doi.org/10.1016/j.wombi.2020.02.006

    Article  Google Scholar 

  72. Megalingam, R.K., Boopathi, K., Sarathkumar, K.S., Sreedevi, S., Vishnu, G.B.: Assistive technology for pregnant women health care: rural area, mobile ultrasound scan system (using ASTM E1384-07 standard). In: 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC SAS), pp. 164–169 (2013). https://doi.org/10.1109/GHTC-SAS.2013.6629909

  73. Merrill, J., Hershow, R., Gannett, K., Barkley, C.: Pretesting an mHealth intervention for at-risk adolescent girls in Soweto, South Africa. In: ICTD 2013, vol. 2, pp. 96–99. ACM (2013)

    Google Scholar 

  74. Rosli, M.M., Yusop, N.S.M., Fazuly, A.S.: Design of meal intake prediction for gestational diabetes mellitus using genetic algorithm. Int. J. Artif. Intell. 9(4), 591 (2020). https://search.proquest.com/docview/2494545921

  75. Sheikhtaheri, A., Ghafaripour, Z., Bahaadinbeigy, K., Moulaei, K.: The development and usability assessment of an mHealth application to encourage self-care in pregnant women against COVID-19. J. Health. Eng. (2021). https://doi.org/10.1155/2021/9968451

  76. Nasrat, N., Babakerkhell, M.D., Gawhari, G.S., Ahmadi, A.R.: Implementation of a predictive model for skilled child delivery service use in Afghanistan, pp. 249–255. IEEE, Piscataway (2021). https://ieeexplore.ieee.org/document/9730431

  77. Ndayizigamiye, P., Matlala, S.F.: A design of a mobile health system to address teenage pregnancy in South African high schools (n.d.)

    Google Scholar 

  78. Nicklas, J.M., Leiferman, J.A., Lockhart, S., Daly, K.M., Bull, S.S., Barbour, L.A.: Development and modification of a mobile health program to promote postpartum weight loss in women at elevated risk for cardiometabolic disease: single-arm pilot study (2020)

    Google Scholar 

  79. Njie-Carr, V.P.S., Zhu, S., Williams, G.C., Corless, I.B., Himelhoch, S.: Evaluation of a technology-enhanced intervention for older women with HIV infection: a proof of concept study. AIDS Care 33(8), 983–992 (2021). https://doi.org/10.1080/09540121.2020.1810617

    Article  Google Scholar 

  80. Okonofua, F., et al.: Texting for life: a mobile phone application to connect pregnant women with emergency transport and obstetric care in rural Nigeria (2023). https://doi.org/10.1186/s12884-023-05424-9

  81. Pais, S.: Integrating patient-generated wellness data: a user-centered approach. In: Proceedings of the Australasian Computer Science Week Multiconference, ACSW 2020, Melbourne, VIC, Australia, p. 8. Association for Computing Machinery, New York (2020). Article 35. https://doi.org/10.1145/3373017.3373052

  82. Peiris, D.R., et al.: Mobile phone-based nutrition education targeting pregnant and nursing mothers in Sri Lanka. Int. J. Environ. Res. Public Health 20(3), 2324 (2023). https://www.ncbi.nlm.nih.gov/pubmed/36767691

  83. Perkes, S.J., et al.: Development of a maternal and child mHealth intervention with aboriginal and torres strait islander mothers: co-design approach. JMIR Formative Res. 6(7), e33541 (2022). https://search.proquest.com/docview/2696743610

  84. Perrier, T., et al.: Engaging pregnant women in Kenya with a hybrid computer-human SMS communication system. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, Seoul, Republic of Korea, pp. 1429–1438. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2702123.2702124

  85. Pinnarong, R., Siangpipop, S., Harncharnchai, A., Nimmolrat, A., Thinnukool, O.: Thai pregnant mobile application: review and development report. Int. J. Interact. Mob. Technol. 15(13), 57 (2021). https://online-journals.org/index.php/i-jim/article/download/23033/9539

  86. Potzel, A.L., Gar, C., Seissler, J., Lechner, A.: A smartphone app (TRIANGLE) to change cardiometabolic risk behaviors in women following gestational diabetes mellitus: intervention mapping approach (2021)

    Google Scholar 

  87. Puspitasari, I.W., Rinawan, F.R., Purnama, W.G., Susiarno, H., Susanti, A.I.: Development of a chatbot for pregnant women on a Posyandu application in Indonesia: from qualitative approach to decision tree method. Informatics 9(4), 88 (2022). https://doi.org/10.3390/informatics9040088

    Article  Google Scholar 

  88. Rai, I., Patel, D., Singh, A.: “It’s come around way too quickly!” Can technology help parents provide support during menarche? (2022). https://doi.org/10.1145/3532106.3534568

  89. Rajan, J.V., et al.: Understanding the barriers to successful adoption and use of a mobile health information system in a community health center in São Paulo, Brazil: a cohort study. BMC Med. Inform. Dec. Making 16(1), 146 (2016). https://www.ncbi.nlm.nih.gov/pubmed/27855685

  90. Rau, N.M., Hasan, K., Ahamed, S.I., Asan, O., Flynn, K.E., Basir, M.A.: Designing a tablet-based prematurity education app for parents hospitalized for preterm birth (2020)

    Google Scholar 

  91. Ravn Jakobsen, P., Hermann, A.P., Søndergaard, J., Wiil, U., Clemensen, J.: Development of an mHealth application for women newly diagnosed with osteoporosis without preceding fractures: a participatory design approach (2018)

    Google Scholar 

  92. Rezaee, R., Asadi, S., Yazdani, A., Rezvani, A., Kazeroon, A.M.: Development, usability and quality evaluation of the resilient mobile application for women with breast cancer. Health Sci. Rep. 5(4), e708 (2022). https://doi.org/10.1002/hsr2.708

    Article  Google Scholar 

  93. Richterman, A., et al.: Acceptability and feasibility of a mobile phone application to support HIV pre-exposure prophylaxis among women with opioid use disorder. AIDS Behav. 27(10), 3460–3467 (2023). https://doi.org/10.1007/s10461-023-04060-w

    Article  Google Scholar 

  94. Rodriguez, R.R.B., Mapolon, R.J.A., Reyes, R.S.J.: A non-intrusive single channel abdominal fetal electrocardiogram monitor using singular value decomposition, pp. 1–8. IEEE, Piscataway (2021). https://ieeexplore.ieee.org/document/9664665

  95. Roh, S., et al.: Mobile web app intervention to promote breast cancer screening among American Indian women in the northern plains: feasibility and efficacy study. JMIR Formative Res. 7, e47851 (2023). https://www.ncbi.nlm.nih.gov/pubmed/37471115

  96. Rusu, A., Blaga, O., Bucevschi, M., Meghea, C.: Co-designing a mHealth intervention to prevent smoking relapse after birth. Rom. J. Appl. Psychol. 22(1), 1–25 (2020). https://doi.org/10.24913/rjap.22.1.04

  97. Sadavarte, S.S., Bodanese, E.: Pregnancy companion chatbot using alexa and amazon web services. In: 2019 IEEE Pune Section International Conference (PuneCon), pp. 1–5 (2019). https://doi.org/10.1109/PuneCon46936.2019.9105762

  98. Sajjad, U., Shahid, S.: Baby+: a mobile application to support pregnant women in Pakistan, pp. 667–674. ACM (2016). https://doi.org/10.1145/2957265.2961856

  99. Antelo, V.S., et al.: Developing SMS content to promote Papanicolaou triage among women who performed HPV self-collection test: qualitative study. JMIR Formative Res. (2020). https://doi.org/10.2196/14652

  100. Antelo, V.S., et al.: A counseling mobile app to reduce the psychosocial impact of human papillomavirus testing: formative research using a user-centered design approach in a low-middle-income setting in Argentina (2022)

    Google Scholar 

  101. Seely, E.W., Weitzman, P.F., Cortes, D., Vicente, S.R., Levkoff, S.E.: Development and feasibility of an app to decrease risk factors for type 2 diabetes in hispanic women with recent gestational diabetes (Hola Bebé, Adiós Diabetes): pilot pre-post study (2020)

    Google Scholar 

  102. Senette, C., Buzzi, M.C., Paratore, M.T.: Self-assess momentary mood in mobile devices: a case study with mature female participants (2023)

    Google Scholar 

  103. Sengupta, A., Dutta, K., Beckie, T., Chellappan, S.: Designing a health coach-augmented mHealth system for the secondary prevention of coronary heart disease among women (2022). https://ieeexplore.ieee.org/document/9244615

  104. Shinde, S.R., Shinde, R., Shanbhag, S., Solanki, M., Sable, P., Kimbahune, S.: mHEALTH-PHC - application design for rural health care, pp. 1–5. IEEE (2014). https://ieeexplore.ieee.org/document/7147514

  105. Signorelli, G.R., Monteiro-Guerra, F., Rivera-Romero, O., Núñez-Benjumea, F.J., Fernández-Luque, L.: Breast cancer physical activity mobile intervention: early findings from a user experience and acceptability mixed methods study. JMIR Formative Res. 6(6), e32354 (2022). https://search.proquest.com/docview/2682567768

  106. Heiney, S., Donevant, S.B., Singh, A., Schooley, B.L.: Design of the STORY+ app: including cultural sensitivity for patient engagement and adherence (2020)

    Google Scholar 

  107. Smith, S.M., Bais, B., M’hamdi, H.I., Schermer, M.H.N., Steegers-Theunissen, R.P.M.: Stimulating the uptake of preconception care by women with a vulnerable health status through mHealth app-based nudging (pregnant faster): cocreation design and protocol for a cohort study (2023)

    Google Scholar 

  108. Smith, W., et al.: Designing an app for pregnancy care for a culturally and linguistically diverse community. In: OZCHI 2017, pp. 337–346. ACM (2017)

    Google Scholar 

  109. Supraja, A., Vasavi, A.D., Karthikeyan, K.V.: Pregnant women health monitoring system, pp. 1–6. IEEE (2023). https://ieeexplore.ieee.org/document/10200921

  110. Tandon, A., Hari, K., Rajani, A.: Case study: paperless labour monitoring system in low resource healthcare settings (2019). https://doi.org/10.1145/3364183.3364192

  111. Tay, I., Garland, S., Gorelik, A., Wark, J.D.: Development and testing of a mobile phone app for self-monitoring of calcium intake in young women (2017)

    Google Scholar 

  112. Teitelman, A.M., Kim, S.K., Waas, R., DeSenna, A., Duncan, R.: Development of the NowIKnow mobile application to promote completion of HPV vaccine series among young adult women. J. Obstet. Gynecol. Neonatal. Nurs. 47(6), 844–852 (2018)

    Article  Google Scholar 

  113. Tesema, N., Guillaume, D., Francis, S., Paul, S., Chandler, R.: Mobile phone apps for HIV prevention among college-aged black women in Atlanta: mixed methods study and user-centered prototype (2023)

    Google Scholar 

  114. Thiga, M., Kimeto, P., Mgala, M., Kweyu, E., Wanyee, S., Mwirigi, T.: A remote blood pressure data collection and monitoring system for expectant mothers. IST-Africa Institute and Authors, Piscataway, pp. 1–9 (2022). https://ieeexplore.ieee.org/document/9845511

  115. Thirumalai, M., et al.: An interactive voice response system to increase physical activity and prevent cancer in the rural Alabama black belt: design and usability study. JMIR Hum. Factors (2022). https://doi.org/10.2196/29494

  116. Tiwari, P., Sorathia, K.: Visualising and systematizing a per-poor ICT intervention for Rural and semi-urban mothers in India. In: VINCI 2014, pp. 129–138. ACM (2014)

    Google Scholar 

  117. Tommasone, G., Bazzani, M., Solinas, V., Serafini, P.: Midwifery e-health: from design to validation of “mammastyle—Gravidanza Fisiologica”. In: 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (HealtHcom), pp. 1–6 (2016). https://doi.org/10.1109/HealthCom.2016.7749499

  118. Tripathi, V., Arnoff, E., Bellows, B., Sripad, P.: Use of interactive voice response technology to address barriers to fistula care in Nigeria and Uganda. mHealth 6, 12 (2020). https://www.ncbi.nlm.nih.gov/pubmed/32270004

  119. Trude, A.C.B., et al.: A WhatsApp-based intervention to improve maternal social support and maternal-child health in southern Brazil: the text-message intervention to enhance social support (TIES) feasibility study (2021). https://us.sagepub.com/en-us/nam/open-access-at-sage

  120. Vaira, L., Bochicchio, M.A., Conte, M., Casaluci, F.M., Melpignano, A.: MamaBot: a system based on ML and NLP for supporting women and families during pregnancy (2018). https://doi.org/10.1145/3216122.3216173

  121. van den Berg, V.A., et al.: Usability and usefulness of a mobile health app for pregnancy-related work advice: mixed-methods approach. JMIR Mhealth Uhealth 7(5), e11442 (2019). https://doi.org/10.2196/11442

    Article  Google Scholar 

  122. Vandenberk, T., et al.: A vendor-independent mobile health monitoring platform for digital health studies: development and usability study (2019)

    Google Scholar 

  123. Vasavi, R.R., Prathibha, S.P., Valiveti, H., Maringanti, S., Parsa, A.: Polycystic ovary syndrome monitoring using machine learning (2023)

    Google Scholar 

  124. Velloza, J., et al.: A clinic-based tablet application to support safer conception among HIV serodiscordant couples in Kenya: feasibility and acceptability study, p. 4 (2019)

    Google Scholar 

  125. Vilaro, M.J., et al.: Key changes to improve social presence of a virtual health assistant promoting colorectal cancer screening informed by a technology acceptance model. BMC Med. Inform. Decis. Making (2021). https://doi.org/10.1186/s12911-021-01549-z

  126. Vu, L.T.H., Nguyen, N.T.K., Tran, H.T.D., Muhajarine, N.: mHealth information for migrants: an e-health intervention for internal migrants in Vietnam. Reprod. Health 13(1), 55 (2016). https://www.ncbi.nlm.nih.gov/pubmed/27180147

  127. Warren, J.R., et al.: Digital HPV education to increase vaccine uptake among low income women. PEC Innov. 2, 100111 (2023). https://doi.org/10.1016/j.pecinn.2022.100111

    Article  Google Scholar 

  128. Weerahandi, H., Paul, S., Quintiliani, L.M., Chokshi, S., Mann, D.M.: A mobile health coaching intervention for controlling hypertension: single-arm pilot pre-post study (2020)

    Google Scholar 

  129. Wettasinghe, R.I., Perera, P.B., Aponsu, G.R.I., Jayathilake, A.V.S.K., Gamage, M.P.A.W., Silva, K.P.O.H.O.: Knowledge sharing and prediction system for maternity and infant care in Sri Lanka, pp. 292–297. IEEE (2013). https://ieeexplore.ieee.org/document/6553927

  130. Wicahyono, G., Setyanto, A., Raharjo, S., Munandar, A.: Pregnancy monitoring mobile application user experience assessment. In: 2019 International Conference on Information and Communications Technology (ICOIACT), pp. 872–877 (2019). https://doi.org/10.1109/ICOIACT46704.2019.8938446

  131. Wierckx, A., Shahid, S., Al Mahmud, A.: Babywijzer. In: CHI EA 2014, pp. 1333–1338. ACM (2014)

    Google Scholar 

  132. Wilson, E.C., et al.: Results from a peer-based digital systems navigation intervention to increase HIV prevention and care behaviors of young trans women in Rio de Janeiro, Brazil. J. Glob. Health Rep. 5, e2021077 (2021)

    Google Scholar 

  133. Wood, J., Crew, K., Kukafka, R., Finkelstein, J.: A comprehensive informatics framework to increase breast cancer risk assessment and chemoprevention in the primary care setting. In: 2016 IEEE International Conference on Healthcare Informatics (CHI), pp. 293–296 (2016). https://doi.org/10.1109/ICHI.2016.41

  134. Yap, F., Loy, S.L., Ku, C.W., Chua, M.C., Godfrey, K.M., Chan, J.K.Y.: A golden thread approach to transforming maternal and child health in Singapore. BMC Pregnancy Childbirth 22(1), 561 (2022). https://search.proquest.com/docview/2691571998

  135. Yee, L.M., et al.: Patient and provider perspectives on a novel mobile health intervention for low-income pregnant women with gestational or type 2 diabetes mellitus. J. Diabetes Sci. Technol. 15(5), 1121–1133 (2021). https://doi.org/10.1177/1932296820937347

    Article  Google Scholar 

  136. Zaman, K.T., Hasan, W.U., Bazlul, L., Motahar, T., Ahmed, N.: Exploring challenges and solution approaches regarding wellbeing of female Rohingya community in Bangladesh, pp. 361–366. IEEE, Piscataway (2019). https://ieeexplore.ieee.org/document/8929413

  137. Zhang, K., Jiang, M., Ma, Z.: The monitoring system for pregnancy-induced hypertension based on mobile communication technology, pp. 263–266. IEEE (2015). https://ieeexplore.ieee.org/document/7184789

  138. Zingg, A., Singh, T., Franklin, A., Ross, A., Myneni, S.: Digital health technologies for peripartum depression management among low-socioeconomic status populations: a qualitative analysis of patient, provider, and social media perspectives (2022). Preprint

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemi Akanbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akanbi, K., Lekwa, S.N., Prabhakar, A.S. (2024). Exploring Women-Centric Health Technology Design: A Scoping Review. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2024, Volume 4. FTC 2024. Lecture Notes in Networks and Systems, vol 1157. Springer, Cham. https://doi.org/10.1007/978-3-031-73128-0_33

Download citation

Publish with us

Policies and ethics