Abstract
We seek to learn a generalizable goal-conditioned policy that enables diverse robot manipulation—interacting with unseen objects in novel scenes without test-time adaptation. While typical approaches rely on a large amount of demonstration data for such generalization, we propose an approach that leverages web videos to predict plausible interaction plans and learns a task-agnostic transformation to obtain robot actions in the real world. Our framework, Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal, and can be trained with diverse videos on the web including those of humans and robots manipulating everyday objects. We use these 2D track predictions to infer a sequence of rigid transforms of the object to be manipulated, and obtain robot end-effector poses that can be executed in an open-loop manner. We then refine this open-loop plan by predicting residual actions through a closed loop policy trained with a few embodiment-specific demonstrations. We show that this approach of combining scalably learned track prediction with a residual policy requiring minimal in-domain robot-specific data enables diverse generalizable robot manipulation, and present a wide array of real-world robot manipulation results across unseen tasks, objects, and scenes https://homangab.github.io/track2act/.
R. Mottaghi, A. Gupta, and S. Tulsiani—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
by end-effector we mean the part of the robot that interacts with an object.
References
Baek, S., Kim, K.I., Kim, T.K.: Pushing the envelope for RGB-based dense 3d hand pose estimation via neural rendering. In: CVPR (2019)
Bahl, S., Gupta, A., Pathak, D.: Human-to-robot imitation in the wild. In: RSS (2022)
Bahl, S., Mendonca, R., Chen, L., Jain, U., Pathak, D.: Affordances from human videos as a versatile representation for robotics. In: CVPR (2023)
Bharadhwaj, H., Gupta, A., Kumar, V., Tulsiani, S.: Towards generalizable zero-shot manipulation via translating human interaction plans. In: 2024 IEEE International Conference on Robotics and Automation (ICRA) (2024)
Bharadhwaj, H., Vakil, J., Sharma, M., Gupta, A., Tulsiani, S., Kumar, V.: Roboagent: generalization and efficiency in robot manipulation via semantic augmentations and action chunking. In: 2024 IEEE International Conference on Robotics and Automation (ICRA) (2024)
Boukhayma, A., Bem, R.d., Torr, P.H.: 3d hand shape and pose from images in the wild. In: CVPR (2019)
Brahmbhatt, S., Handa, A., Hays, J., Fox, D.: Contactgrasp: functional multi-finger grasp synthesis from contact. arXiv (2019)
Brohan, A., et al.: Rt-1: robotics transformer for real-world control at scale. arXiv preprint arXiv:2212.06817 (2022)
Byravan, A., Fox, D.: Se3-nets: learning rigid body motion using deep neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 173–180. IEEE (2017)
Damen, D., et al.: Scaling egocentric vision: the epic-kitchens dataset. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 720–736 (2018)
Das, P., Xu, C., Doell, R.F., Corso, J.J.: A thousand frames in just a few words: lingual description of videos through latent topics and sparse object stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2634–2641 (2013)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Doersch, C., et al.: Tap-vid: a benchmark for tracking any point in a video. Adv. Neural. Inf. Process. Syst. 35, 13610–13626 (2022)
Du, Y., et al.: Learning universal policies via text-guided video generation. Adv. Neural Inf. Process. Syst. 36 (2024)
Fang, H.S., et al.: Rh20t: a robotic dataset for learning diverse skills in one-shot. arXiv preprint arXiv:2307.00595 (2023)
Finn, C., Yu, T., Zhang, T., Abbeel, P., Levine, S.: One-shot visual imitation learning via meta-learning. In: Conference on Robot Learning, pp. 357–368. PMLR (2017)
Fu, T.J., et al.: Tell me what happened: unifying text-guided video completion via multimodal masked video generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10681–10692 (2023)
Ge, L., et al.: 3d hand shape and pose estimation from a single RGB image. In: CVPR (2019)
Goyal, A., et al.: Ifor: iterative flow minimization for robotic object rearrangement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14787–14797 (2022)
Goyal, M., Modi, S., Goyal, R., Gupta, S.: Human hands as probes for interactive object understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3293–3303 (2022)
Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5842–5850 (2017)
Grauman, K., et al.: Ego4d: around the world in 3,000 hours of egocentric video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18995–19012 (2022)
Gupta, A., et al.: Photorealistic video generation with diffusion models. arXiv preprint arXiv:2312.06662 (2023)
Hasson, Y., et al.: Learning joint reconstruction of hands and manipulated objects. In: CVPR (2019)
He, Y., Sun, W., Huang, H., Liu, J., Fan, H., Sun, J.: Pvn3d: a deep point-wise 3d keypoints voting network for 6dof pose estimation. In: CVPR (2020)
Hu, Y., Hugonot, J., Fua, P., Salzmann, M.: Segmentation-driven 6d object pose estimation. In: CVPR (2019)
Iqbal, U., Molchanov, P., Breuel, T., Gall, J., Kautz, J.: Hand pose estimation via latent 2.5D heatmap regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 125–143. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_8
Jang, E., et al.: Bc-z: zero-shot task generalization with robotic imitation learning. In: Conference on Robot Learning, pp. 991–1002. PMLR (2022)
Karaev, N., Rocco, I., Graham, B., Neverova, N., Vedaldi, A., Rupprecht, C.: Cotracker: it is better to track together. arXiv preprint arXiv:2307.07635 (2023)
Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)
Kehl, W., Manhardt, F., Tombari, F., Ilic, S., Navab, N.: Ssd-6d: making rgb-based 3d detection and 6d pose estimation great again. In: ICCV (2017)
Keselman, L., Iselin Woodfill, J., Grunnet-Jepsen, A., Bhowmik, A.: Intel realsense stereoscopic depth cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–10 (2017)
Ko, P.C., Mao, J., Du, Y., Sun, S.H., Tenenbaum, J.B.: Learning to act from actionless videos through dense correspondences. arXiv preprint arXiv:2310.08576 (2023)
Kulon, D., Guler, R.A., Kokkinos, I., Bronstein, M.M., Zafeiriou, S.: Weakly-supervised mesh-convolutional hand reconstruction in the wild. In: CVPR (2020)
Li, Y., Liu, M., Rehg, J.M.: In the eye of beholder: joint learning of gaze and actions in first person video. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 639–655. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_38
Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: Sift flow: dense correspondence across different scenes. In: Computer Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille, 12–18 October 2008, Proceedings, Part III 10, pp. 28–42. Springer (2008)
Liu, S., Jiang, H., Xu, J., Liu, S., Wang, X.: Semi-supervised 3d hand-object poses estimation with interactions in time. In: CVPR (2021)
Liu, S., Tripathi, S., Majumdar, S., Wang, X.: Joint hand motion and interaction hotspots prediction from egocentric videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3282–3292 (2022)
Ma, Y.J., Sodhani, S., Jayaraman, D., Bastani, O., Kumar, V., Zhang, A.: Vip: towards universal visual reward and representation via value-implicit pre-training. arXiv preprint arXiv:2210.00030 (2022)
Mahi Shafiullah, N.M., et al.: On bringing robots home. arXiv e-prints, pp. arXiv–2311 (2023)
Majumdar, A., et al.: Where are we in the search for an artificial visual cortex for embodied intelligence? arXiv preprint arXiv:2303.18240 (2023)
Mandlekar, A., et al.: Roboturk: a crowdsourcing platform for robotic skill learning through imitation. In: Conference on Robot Learning, pp. 879–893. PMLR (2018)
Mo, K., Guibas, L.J., Mukadam, M., Gupta, A., Tulsiani, S.: Where2act: from pixels to actions for articulated 3d objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6813–6823 (2021)
Nagarajan, T., Feichtenhofer, C., Grauman, K.: Grounded human-object interaction hotspots from video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8688–8697 (2019)
Nair, S., Rajeswaran, A., Kumar, V., Finn, C., Gupta, A.: R3m: a universal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601 (2022)
Padalkar, A., et al.: Open x-embodiment: robotic learning datasets and rt-x models. arXiv preprint arXiv:2310.08864 (2023)
Pan, C., Okorn, B., Zhang, H., Eisner, B., Held, D.: Tax-pose: task-specific cross-pose estimation for robot manipulation. In: Conference on Robot Learning, pp. 1783–1792. PMLR (2023)
Parisi, S., Rajeswaran, A., Purushwalkam, S., Gupta, A.: The unsurprising effectiveness of pre-trained vision models for control. arXiv preprint arXiv:2203.03580 (2022)
Peebles, W., Xie, S.: Scalable diffusion models with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205 (2023)
Qin, Y., et al.: Dexmv: imitation learning for dexterous manipulation from human videos. arXiv preprint arXiv:2108.05877 (2021)
Qin, Z., Fang, K., Zhu, Y., Fei-Fei, L., Savarese, S.: Keto: learning keypoint representations for tool manipulation. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 7278–7285. IEEE (2020)
Rad, M., Lepetit, V.: Bb8: a scalable, accurate, robust to partial occlusion method for predicting the 3d poses of challenging objects without using depth. In: ICCV (2017)
Rong, Y., Shiratori, T., Joo, H.: Frankmocap: fast monocular 3d hand and body motion capture by regression and integration. arXiv preprint arXiv:2008.08324 (2020)
Seita, D., Wang, Y., Shetty, S.J., Li, E.Y., Erickson, Z., Held, D.: Toolflownet: robotic manipulation with tools via predicting tool flow from point clouds. In: Conference on Robot Learning, pp. 1038–1049. PMLR (2023)
Shan, D., Geng, J., Shu, M., Fouhey, D.: Understanding human hands in contact at internet scale. In: CVPR (2020)
Shaw, K., Bahl, S., Pathak, D.: Videodex: learning dexterity from internet videos. In: 6th Annual Conference on Robot Learning
Smith, L., Dhawan, N., Zhang, M., Abbeel, P., Levine, S.: Avid: learning multi-stage tasks via pixel-level translation of human videos. arXiv (2019)
Spurr, A., Song, J., Park, S., Hilliges, O.: Cross-modal deep variational hand pose estimation. In: CVPR (2018)
De la Torre, F., et al.: Guide to the Carnegie Mellon University Multimodal Activity (CMU-MMAC) Database (2009)
Vecerik, M., et al.: Robotap: tracking arbitrary points for few-shot visual imitation. arXiv preprint arXiv:2308.15975 (2023)
Walke, H.R., et al.: Bridgedata v2: a dataset for robot learning at scale. In: Conference on Robot Learning, pp. 1723–1736. PMLR (2023)
Wang, C., et al.: Mimicplay: long-horizon imitation learning by watching human play. arXiv preprint arXiv:2302.12422 (2023)
Wen, C., et al.: Any-point trajectory modeling for policy learning. arXiv preprint arXiv:2401.00025 (2023)
Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: Posecnn: a convolutional neural network for 6d object pose estimation in cluttered scenes. arXiv (2018)
Xiao, T., Radosavovic, I., Darrell, T., Malik, J.: Masked visual pre-training for motor control. arXiv preprint arXiv:2203.06173 (2022)
Xiong, H., Li, Q., Chen, Y.C., Bharadhwaj, H., Sinha, S., Garg, A.: Learning by watching: physical imitation of manipulation skills from human videos. arXiv (2021)
Xu, H., et al.: Unifying flow, stereo and depth estimation. IEEE Trans. Pattern Anal. Mach. Intell. (2023)
Yan, W., Hafner, D., James, S., Abbeel, P.: Temporally consistent transformers for video generation. arXiv preprint arXiv:2210.02396 (2022)
Yang, M., Du, Y., Ghasemipour, K., Tompson, J., Schuurmans, D., Abbeel, P.: Learning interactive real-world simulators. arXiv preprint arXiv:2310.06114 (2023)
Young, S., Gandhi, D., Tulsiani, S., Gupta, A., Abbeel, P., Pinto, L.: Visual imitation made easy. In: Conference on Robot Learning (CoRL) (2020)
Zhao, T.Z., Kumar, V., Levine, S., Finn, C.: Learning fine-grained bimanual manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705 (2023)
Zimmermann, C., Brox, T.: Learning to estimate 3d hand pose from single RGB images. In: CVPR (2017)
Zitkovich, B., et al.: Rt-2: vision-language-action models transfer web knowledge to robotic control. In: Conference on Robot Learning, pp. 2165–2183. PMLR (2023)
Acknowledgement
We thank Yufei Ye, Himangi Mittal, Devendra Chaplot, Abitha Thankaraj, Tarasha Khurana, Akash Sharma, Sally Chen, Jay Vakil, Chen Bao, Unnat Jain, Swaminathan Gurumurthy for helpful discussions and feedback. We thank Carl Doersch and Nikita Karaev for insightful discussions about point tracking. This research was partially supported by a Google gift award.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bharadhwaj, H., Mottaghi, R., Gupta, A., Tulsiani, S. (2025). Track2Act: Predicting Point Tracks from Internet Videos Enables Generalizable Robot Manipulation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15134. Springer, Cham. https://doi.org/10.1007/978-3-031-73116-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-73116-7_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73115-0
Online ISBN: 978-3-031-73116-7
eBook Packages: Computer ScienceComputer Science (R0)