Nothing Special   »   [go: up one dir, main page]

Skip to main content

Track2Act: Predicting Point Tracks from Internet Videos Enables Generalizable Robot Manipulation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15134))

Included in the following conference series:

  • 22 Accesses

Abstract

We seek to learn a generalizable goal-conditioned policy that enables diverse robot manipulation—interacting with unseen objects in novel scenes without test-time adaptation. While typical approaches rely on a large amount of demonstration data for such generalization, we propose an approach that leverages web videos to predict plausible interaction plans and learns a task-agnostic transformation to obtain robot actions in the real world. Our framework, Track2Act  predicts tracks of how points in an image should move in future time-steps based on a goal, and can be trained with diverse videos on the web including those of humans and robots manipulating everyday objects. We use these 2D track predictions to infer a sequence of rigid transforms of the object to be manipulated, and obtain robot end-effector poses that can be executed in an open-loop manner. We then refine this open-loop plan by predicting residual actions through a closed loop policy trained with a few embodiment-specific demonstrations. We show that this approach of combining scalably learned track prediction with a residual policy requiring minimal in-domain robot-specific data enables diverse generalizable robot manipulation, and present a wide array of real-world robot manipulation results across unseen tasks, objects, and scenes https://homangab.github.io/track2act/.

R. Mottaghi, A. Gupta, and S. Tulsiani—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    by end-effector we mean the part of the robot that interacts with an object.

References

  1. Baek, S., Kim, K.I., Kim, T.K.: Pushing the envelope for RGB-based dense 3d hand pose estimation via neural rendering. In: CVPR (2019)

    Google Scholar 

  2. Bahl, S., Gupta, A., Pathak, D.: Human-to-robot imitation in the wild. In: RSS (2022)

    Google Scholar 

  3. Bahl, S., Mendonca, R., Chen, L., Jain, U., Pathak, D.: Affordances from human videos as a versatile representation for robotics. In: CVPR (2023)

    Google Scholar 

  4. Bharadhwaj, H., Gupta, A., Kumar, V., Tulsiani, S.: Towards generalizable zero-shot manipulation via translating human interaction plans. In: 2024 IEEE International Conference on Robotics and Automation (ICRA) (2024)

    Google Scholar 

  5. Bharadhwaj, H., Vakil, J., Sharma, M., Gupta, A., Tulsiani, S., Kumar, V.: Roboagent: generalization and efficiency in robot manipulation via semantic augmentations and action chunking. In: 2024 IEEE International Conference on Robotics and Automation (ICRA) (2024)

    Google Scholar 

  6. Boukhayma, A., Bem, R.d., Torr, P.H.: 3d hand shape and pose from images in the wild. In: CVPR (2019)

    Google Scholar 

  7. Brahmbhatt, S., Handa, A., Hays, J., Fox, D.: Contactgrasp: functional multi-finger grasp synthesis from contact. arXiv (2019)

    Google Scholar 

  8. Brohan, A., et al.: Rt-1: robotics transformer for real-world control at scale. arXiv preprint arXiv:2212.06817 (2022)

  9. Byravan, A., Fox, D.: Se3-nets: learning rigid body motion using deep neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 173–180. IEEE (2017)

    Google Scholar 

  10. Damen, D., et al.: Scaling egocentric vision: the epic-kitchens dataset. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 720–736 (2018)

    Google Scholar 

  11. Das, P., Xu, C., Doell, R.F., Corso, J.J.: A thousand frames in just a few words: lingual description of videos through latent topics and sparse object stitching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2634–2641 (2013)

    Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  13. Doersch, C., et al.: Tap-vid: a benchmark for tracking any point in a video. Adv. Neural. Inf. Process. Syst. 35, 13610–13626 (2022)

    Google Scholar 

  14. Du, Y., et al.: Learning universal policies via text-guided video generation. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  15. Fang, H.S., et al.: Rh20t: a robotic dataset for learning diverse skills in one-shot. arXiv preprint arXiv:2307.00595 (2023)

  16. Finn, C., Yu, T., Zhang, T., Abbeel, P., Levine, S.: One-shot visual imitation learning via meta-learning. In: Conference on Robot Learning, pp. 357–368. PMLR (2017)

    Google Scholar 

  17. Fu, T.J., et al.: Tell me what happened: unifying text-guided video completion via multimodal masked video generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10681–10692 (2023)

    Google Scholar 

  18. Ge, L., et al.: 3d hand shape and pose estimation from a single RGB image. In: CVPR (2019)

    Google Scholar 

  19. Goyal, A., et al.: Ifor: iterative flow minimization for robotic object rearrangement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14787–14797 (2022)

    Google Scholar 

  20. Goyal, M., Modi, S., Goyal, R., Gupta, S.: Human hands as probes for interactive object understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3293–3303 (2022)

    Google Scholar 

  21. Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5842–5850 (2017)

    Google Scholar 

  22. Grauman, K., et al.: Ego4d: around the world in 3,000 hours of egocentric video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18995–19012 (2022)

    Google Scholar 

  23. Gupta, A., et al.: Photorealistic video generation with diffusion models. arXiv preprint arXiv:2312.06662 (2023)

  24. Hasson, Y., et al.: Learning joint reconstruction of hands and manipulated objects. In: CVPR (2019)

    Google Scholar 

  25. He, Y., Sun, W., Huang, H., Liu, J., Fan, H., Sun, J.: Pvn3d: a deep point-wise 3d keypoints voting network for 6dof pose estimation. In: CVPR (2020)

    Google Scholar 

  26. Hu, Y., Hugonot, J., Fua, P., Salzmann, M.: Segmentation-driven 6d object pose estimation. In: CVPR (2019)

    Google Scholar 

  27. Iqbal, U., Molchanov, P., Breuel, T., Gall, J., Kautz, J.: Hand pose estimation via latent 2.5D heatmap regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 125–143. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_8

    Chapter  Google Scholar 

  28. Jang, E., et al.: Bc-z: zero-shot task generalization with robotic imitation learning. In: Conference on Robot Learning, pp. 991–1002. PMLR (2022)

    Google Scholar 

  29. Karaev, N., Rocco, I., Graham, B., Neverova, N., Vedaldi, A., Rupprecht, C.: Cotracker: it is better to track together. arXiv preprint arXiv:2307.07635 (2023)

  30. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  31. Kehl, W., Manhardt, F., Tombari, F., Ilic, S., Navab, N.: Ssd-6d: making rgb-based 3d detection and 6d pose estimation great again. In: ICCV (2017)

    Google Scholar 

  32. Keselman, L., Iselin Woodfill, J., Grunnet-Jepsen, A., Bhowmik, A.: Intel realsense stereoscopic depth cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–10 (2017)

    Google Scholar 

  33. Ko, P.C., Mao, J., Du, Y., Sun, S.H., Tenenbaum, J.B.: Learning to act from actionless videos through dense correspondences. arXiv preprint arXiv:2310.08576 (2023)

  34. Kulon, D., Guler, R.A., Kokkinos, I., Bronstein, M.M., Zafeiriou, S.: Weakly-supervised mesh-convolutional hand reconstruction in the wild. In: CVPR (2020)

    Google Scholar 

  35. Li, Y., Liu, M., Rehg, J.M.: In the eye of beholder: joint learning of gaze and actions in first person video. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 639–655. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_38

    Chapter  Google Scholar 

  36. Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: Sift flow: dense correspondence across different scenes. In: Computer Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille, 12–18 October 2008, Proceedings, Part III 10, pp. 28–42. Springer (2008)

    Google Scholar 

  37. Liu, S., Jiang, H., Xu, J., Liu, S., Wang, X.: Semi-supervised 3d hand-object poses estimation with interactions in time. In: CVPR (2021)

    Google Scholar 

  38. Liu, S., Tripathi, S., Majumdar, S., Wang, X.: Joint hand motion and interaction hotspots prediction from egocentric videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3282–3292 (2022)

    Google Scholar 

  39. Ma, Y.J., Sodhani, S., Jayaraman, D., Bastani, O., Kumar, V., Zhang, A.: Vip: towards universal visual reward and representation via value-implicit pre-training. arXiv preprint arXiv:2210.00030 (2022)

  40. Mahi Shafiullah, N.M., et al.: On bringing robots home. arXiv e-prints, pp. arXiv–2311 (2023)

    Google Scholar 

  41. Majumdar, A., et al.: Where are we in the search for an artificial visual cortex for embodied intelligence? arXiv preprint arXiv:2303.18240 (2023)

  42. Mandlekar, A., et al.: Roboturk: a crowdsourcing platform for robotic skill learning through imitation. In: Conference on Robot Learning, pp. 879–893. PMLR (2018)

    Google Scholar 

  43. Mo, K., Guibas, L.J., Mukadam, M., Gupta, A., Tulsiani, S.: Where2act: from pixels to actions for articulated 3d objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6813–6823 (2021)

    Google Scholar 

  44. Nagarajan, T., Feichtenhofer, C., Grauman, K.: Grounded human-object interaction hotspots from video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8688–8697 (2019)

    Google Scholar 

  45. Nair, S., Rajeswaran, A., Kumar, V., Finn, C., Gupta, A.: R3m: a universal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601 (2022)

  46. Padalkar, A., et al.: Open x-embodiment: robotic learning datasets and rt-x models. arXiv preprint arXiv:2310.08864 (2023)

  47. Pan, C., Okorn, B., Zhang, H., Eisner, B., Held, D.: Tax-pose: task-specific cross-pose estimation for robot manipulation. In: Conference on Robot Learning, pp. 1783–1792. PMLR (2023)

    Google Scholar 

  48. Parisi, S., Rajeswaran, A., Purushwalkam, S., Gupta, A.: The unsurprising effectiveness of pre-trained vision models for control. arXiv preprint arXiv:2203.03580 (2022)

  49. Peebles, W., Xie, S.: Scalable diffusion models with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205 (2023)

    Google Scholar 

  50. Qin, Y., et al.: Dexmv: imitation learning for dexterous manipulation from human videos. arXiv preprint arXiv:2108.05877 (2021)

  51. Qin, Z., Fang, K., Zhu, Y., Fei-Fei, L., Savarese, S.: Keto: learning keypoint representations for tool manipulation. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 7278–7285. IEEE (2020)

    Google Scholar 

  52. Rad, M., Lepetit, V.: Bb8: a scalable, accurate, robust to partial occlusion method for predicting the 3d poses of challenging objects without using depth. In: ICCV (2017)

    Google Scholar 

  53. Rong, Y., Shiratori, T., Joo, H.: Frankmocap: fast monocular 3d hand and body motion capture by regression and integration. arXiv preprint arXiv:2008.08324 (2020)

  54. Seita, D., Wang, Y., Shetty, S.J., Li, E.Y., Erickson, Z., Held, D.: Toolflownet: robotic manipulation with tools via predicting tool flow from point clouds. In: Conference on Robot Learning, pp. 1038–1049. PMLR (2023)

    Google Scholar 

  55. Shan, D., Geng, J., Shu, M., Fouhey, D.: Understanding human hands in contact at internet scale. In: CVPR (2020)

    Google Scholar 

  56. Shaw, K., Bahl, S., Pathak, D.: Videodex: learning dexterity from internet videos. In: 6th Annual Conference on Robot Learning

    Google Scholar 

  57. Smith, L., Dhawan, N., Zhang, M., Abbeel, P., Levine, S.: Avid: learning multi-stage tasks via pixel-level translation of human videos. arXiv (2019)

    Google Scholar 

  58. Spurr, A., Song, J., Park, S., Hilliges, O.: Cross-modal deep variational hand pose estimation. In: CVPR (2018)

    Google Scholar 

  59. De la Torre, F., et al.: Guide to the Carnegie Mellon University Multimodal Activity (CMU-MMAC) Database (2009)

    Google Scholar 

  60. Vecerik, M., et al.: Robotap: tracking arbitrary points for few-shot visual imitation. arXiv preprint arXiv:2308.15975 (2023)

  61. Walke, H.R., et al.: Bridgedata v2: a dataset for robot learning at scale. In: Conference on Robot Learning, pp. 1723–1736. PMLR (2023)

    Google Scholar 

  62. Wang, C., et al.: Mimicplay: long-horizon imitation learning by watching human play. arXiv preprint arXiv:2302.12422 (2023)

  63. Wen, C., et al.: Any-point trajectory modeling for policy learning. arXiv preprint arXiv:2401.00025 (2023)

  64. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: Posecnn: a convolutional neural network for 6d object pose estimation in cluttered scenes. arXiv (2018)

    Google Scholar 

  65. Xiao, T., Radosavovic, I., Darrell, T., Malik, J.: Masked visual pre-training for motor control. arXiv preprint arXiv:2203.06173 (2022)

  66. Xiong, H., Li, Q., Chen, Y.C., Bharadhwaj, H., Sinha, S., Garg, A.: Learning by watching: physical imitation of manipulation skills from human videos. arXiv (2021)

    Google Scholar 

  67. Xu, H., et al.: Unifying flow, stereo and depth estimation. IEEE Trans. Pattern Anal. Mach. Intell. (2023)

    Google Scholar 

  68. Yan, W., Hafner, D., James, S., Abbeel, P.: Temporally consistent transformers for video generation. arXiv preprint arXiv:2210.02396 (2022)

  69. Yang, M., Du, Y., Ghasemipour, K., Tompson, J., Schuurmans, D., Abbeel, P.: Learning interactive real-world simulators. arXiv preprint arXiv:2310.06114 (2023)

  70. Young, S., Gandhi, D., Tulsiani, S., Gupta, A., Abbeel, P., Pinto, L.: Visual imitation made easy. In: Conference on Robot Learning (CoRL) (2020)

    Google Scholar 

  71. Zhao, T.Z., Kumar, V., Levine, S., Finn, C.: Learning fine-grained bimanual manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705 (2023)

  72. Zimmermann, C., Brox, T.: Learning to estimate 3d hand pose from single RGB images. In: CVPR (2017)

    Google Scholar 

  73. Zitkovich, B., et al.: Rt-2: vision-language-action models transfer web knowledge to robotic control. In: Conference on Robot Learning, pp. 2165–2183. PMLR (2023)

    Google Scholar 

Download references

Acknowledgement

We thank Yufei Ye, Himangi Mittal, Devendra Chaplot, Abitha Thankaraj, Tarasha Khurana, Akash Sharma, Sally Chen, Jay Vakil, Chen Bao, Unnat Jain, Swaminathan Gurumurthy for helpful discussions and feedback. We thank Carl Doersch and Nikita Karaev for insightful discussions about point tracking. This research was partially supported by a Google gift award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homanga Bharadhwaj .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 693 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bharadhwaj, H., Mottaghi, R., Gupta, A., Tulsiani, S. (2025). Track2Act: Predicting Point Tracks from Internet Videos Enables Generalizable Robot Manipulation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15134. Springer, Cham. https://doi.org/10.1007/978-3-031-73116-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73116-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73115-0

  • Online ISBN: 978-3-031-73116-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics