Abstract
Compositing an object into an image involves multiple non-trivial sub-tasks such as object placement and scaling, color/lighting harmonization, viewpoint/geometry adjustment, and shadow/reflection generation. Recent generative image compositing methods leverage diffusion models to handle multiple sub-tasks at once. However, existing models face limitations due to their reliance on masking the original object during training, which constrains their generation to the input mask. Furthermore, obtaining an accurate input mask specifying the location and scale of the object in a new image can be highly challenging. To overcome such limitations, we define a novel problem of unconstrained generative object compositing, i.e., the generation is not bounded by the mask, and train a diffusion-based model on a synthesized paired dataset. Our first-of-its-kind model is able to generate object effects such as shadows and reflections that go beyond the mask, enhancing image realism. Additionally, if an empty mask is provided, our model automatically places the object in diverse natural locations and scales, accelerating the compositing workflow. Our model outperforms existing object placement and compositing models in various quality metrics and user studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alaluf, Y., Tov, O., Mokady, R., Gal, R., Bermano, A.: Hyperstyle: stylegan inversion with hypernetworks for real image editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18511–18521 (2022)
Avrahami, O., Fried, O., Lischinski, D.: Blended latent diffusion. ACM Trans. Graph. (TOG) 42(4), 1–11 (2023)
Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of natural images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18208–18218 (2022)
Azadi, S., Pathak, D., Ebrahimi, S., Darrell, T.: Compositional GAN: learning image-conditional binary composition. Int. J. Comput. Vision 128, 2570–2585 (2020)
Bau, D., et al.: Semantic photo manipulation with a generative image prior. arXiv preprint arXiv:2005.07727 (2020)
Chen, H., Zhang, Y., Wang, X., Duan, X., Zhou, Y., Zhu, W.: Disenbooth: disentangled parameter-efficient tuning for subject-driven text-to-image generation. arXiv preprint arXiv:2305.03374 (2023)
Chen, W., et al.: Subject-driven text-to-image generation via apprenticeship learning. arXiv preprint arXiv:2304.00186 (2023)
Chen, X., Huang, L., Liu, Y., Shen, Y., Zhao, D., Zhao, H.: Anydoor: zero-shot object-level image customization. arXiv preprint arXiv:2307.09481 (2023)
Dvornik, N., Mairal, J., Schmid, C.: Modeling visual context is key to augmenting object detection datasets. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 364–380 (2018)
Dvornik, N., Mairal, J., Schmid, C.: On the importance of visual context for data augmentation in scene understanding. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 2014–2028 (2019)
Fang, H.S., Sun, J., Wang, R., Gou, M., Li, Y.L., Lu, C.: Instaboost: boosting instance segmentation via probability map guided copy-pasting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 682–691 (2019)
Fu, S., et al.: Dreamsim: learning new dimensions of human visual similarity using synthetic data. arXiv preprint arXiv:2306.09344 (2023)
Gal, R., et al.: An image is worth one word: personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618 (2022)
Gu, S., Bao, J., Yang, H., Chen, D., Wen, F., Yuan, L.: Mask-guided portrait editing with conditional GANs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3436–3445 (2019)
Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626 (2022)
Hessel, J., Holtzman, A., Forbes, M., Le Bras, R., Choi, Y.: Clipscore: a reference-free evaluation metric for image captioning. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 7514–7528 (2021)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Jia, X., et al.: Taming encoder for zero fine-tuning image customization with text-to-image diffusion models. arXiv preprint arXiv:2304.02642 (2023)
Karsch, K., Hedau, V., Forsyth, D., Hoiem, D.: Rendering synthetic objects into legacy photographs. ACM Trans. Graph. (TOG) 30(6), 1–12 (2011)
Kawar, B., et al.: Imagic: text-based real image editing with diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6007–6017 (2023)
Kholgade, N., Simon, T., Efros, A., Sheikh, Y.: 3D object manipulation in a single photograph using stock 3d models. ACM Trans. Graph. (TOG) 33(4), 1–12 (2014)
Kim, G., Kwon, T., Ye, J.C.: Diffusionclip: text-guided diffusion models for robust image manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2426–2435 (2022)
Kim, K., Park, S., Lee, J., Choo, J.: Reference-based image composition with sketch via structure-aware diffusion model. arXiv preprint arXiv:2304.09748 (2023)
Kulal, S., et al.: Putting people in their place: affordance-aware human insertion into scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17089–17099 (2023)
Lalonde, J.F., Hoiem, D., Efros, A.A., Rother, C., Winn, J., Criminisi, A.: Photo clip art. ACM Trans. Graph. (TOG) 26(3), 3-es (2007)
Lee, D., Liu, S., Gu, J., Liu, M.Y., Yang, M.H., Kautz, J.: Context-aware synthesis and placement of object instances. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Li, D., Li, J., Hoi, S.C.: Blip-diffusion: pre-trained subject representation for controllable text-to-image generation and editing. arXiv preprint arXiv:2305.14720 (2023)
Li, T., Ku, M., Wei, C., Chen, W.: Dreamedit: subject-driven image editing. arXiv preprint arXiv:2306.12624 (2023)
Lin, C.H., Yumer, E., Wang, O., Shechtman, E., Lucey, S.: ST-GAN: spatial transformer generative adversarial networks for image compositing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9455–9464 (2018)
Ling, H., Kreis, K., Li, D., Kim, S.W., Torralba, A., Fidler, S.: Editgan: high-precision semantic image editing. Adv. Neural. Inf. Process. Syst. 34, 16331–16345 (2021)
Liu, D., Long, C., Zhang, H., Yu, H., Dong, X., Xiao, C.: Arshadowgan: shadow generative adversarial network for augmented reality in single light scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8139–8148 (2020)
Liu, L., et al.: OPA: object placement assessment dataset. arXiv preprint arXiv:2107.01889 (2021)
Liu, X., et al.: More control for free! image synthesis with semantic diffusion guidance. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 289–299 (2023)
Lu, L., Zhang, B., Niu, L.: Dreamcom: finetuning text-guided inpainting model for image composition. arXiv preprint arXiv:2309.15508 (2023)
Lu, S., Liu, Y., Kong, A.W.K.: TF-icon: diffusion-based training-free cross-domain image composition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2294–2305 (2023)
Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Repaint: inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471 (2022)
Meng, C., et al.: Sdedit: guided image synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073 (2021)
Miao, J., et al.: Large-scale video panoptic segmentation in the wild: a benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21033–21043 (2022)
Niu, L., Liu, Q., Liu, Z., Li, J.: Fast object placement assessment. arXiv preprint arXiv:2205.14280 (2022)
Oquab, M., et al.: Dinov2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)
Qi, L., et al.: Fine-grained entity segmentation. arXiv preprint arXiv:2211.05776 (2022)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Remez, T., Huang, J., Brown, M.: Learning to segment via cut-and-paste. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 37–52 (2018)
Richardson, E., et al.: Encoding in style: a stylegan encoder for image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2287–2296 (2021)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dreambooth: fine tuning text-to-image diffusion models for subject-driven generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510 (2023)
Seyfioglu, M.S., Bouyarmane, K., Kumar, S., Tavanaei, A., Tutar, I.B.: Diffuse to choose: enriching image conditioned inpainting in latent diffusion models for virtual try-all. arXiv preprint arXiv:2401.13795 (2024)
Shi, J., Xiong, W., Lin, Z., Jung, H.J.: Instantbooth: personalized text-to-image generation without test-time finetuning. arXiv preprint arXiv:2304.03411 (2023)
Song, Y., et al.: Objectstitch: generative object compositing. arXiv preprint arXiv:2212.00932 (2022)
Song, Y., et al.: Imprint: generative object compositing by learning identity-preserving representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8048–8058 (2024)
Tan, F., Bernier, C., Cohen, B., Ordonez, V., Barnes, C.: Where and who? Automatic semantic-aware person composition. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1519–1528. IEEE (2018)
Tripathi, S., Chandra, S., Agrawal, A., Tyagi, A., Rehg, J.M., Chari, V.: Learning to generate synthetic data via compositing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 461–470 (2019)
Volokitin, A., Susmelj, I., Agustsson, E., Van Gool, L., Timofte, R.: Efficiently detecting plausible locations for object placement using masked convolutions. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12538, pp. 252–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66823-5_15
Wang, T., et al.: Pretraining is all you need for image-to-image translation. arXiv preprint arXiv:2205.12952 (2022)
Wang, T., Hu, X., Heng, P.A., Fu, C.W.: Instance shadow detection with a single-stage detector. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3259–3273 (2022)
Wang, X., Yu, K., Dong, C., Tang, X., Loy, C.C.: Deep network interpolation for continuous imagery effect transition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1692–1701 (2019)
Xie, S., Zhang, Z., Lin, Z., Hinz, T., Zhang, K.: Smartbrush: text and shape guided object inpainting with diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22428–22437 (2023)
Xu, N., Price, B., Cohen, S., Huang, T.: Deep image matting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2970–2979 (2017)
Xu, N., et al.: Youtube-VOS: sequence-to-sequence video object segmentation. In: Proceedings of the European Conference on Computer Vision, pp. 585–601 (2018)
Xue, B., Ran, S., Chen, Q., Jia, R., Zhao, B., Tang, X.: DCCF: deep comprehensible color filter learning framework for high-resolution image harmonization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13667, pp. 300–316. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20071-7_18
Yang, B., et al.: Paint by example: exemplar-based image editing with diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18381–18391 (2023)
Yang, H., Zhang, R., Guo, X., Liu, W., Zuo, W., Luo, P.: Towards photo-realistic virtual try-on by adaptively generating-preserving image content. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7850–7859 (2020)
Yu, T., et al.: Inpaint anything: segment anything meets image inpainting. arXiv preprint arXiv:2304.06790 (2023)
Yu, X., et al.: Mvimgnet: a large-scale dataset of multi-view images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9150–9161 (2023)
Yuan, Z., Cao, M., Wang, X., Qi, Z., Yuan, C., Shan, Y.: Customnet: zero-shot object customization with variable-viewpoints in text-to-image diffusion models. arXiv preprint arXiv:2310.19784 (2023)
Zhan, F., Zhu, H., Lu, S.: Spatial fusion GAN for image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3653–3662 (2019)
Zhang, B., et al.: Controlcom: controllable image composition using diffusion model. arXiv preprint arXiv:2308.10040 (2023)
Zhang, L., Wen, T., Min, J., Wang, J., Han, D., Shi, J.: Learning object placement by inpainting for compositional data augmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 566–581. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_34
Zhang, S.H., Zhou, Z.P., Liu, B., Dong, X., Hall, P.: What and where: a context-based recommendation system for object insertion. Comput. Vis. Media 6, 79–93 (2020)
Zhang, X., Guo, J., Yoo, P., Matsuo, Y., Iwasawa, Y.: Paste, inpaint and harmonize via denoising: subject-driven image editing with pre-trained diffusion model. arXiv preprint arXiv:2306.07596 (2023)
Zheng, H., et al.: Image inpainting with cascaded modulation GAN and object-aware training. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13676, pp. 277–296. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19787-1_16
Zhou, S., Liu, L., Niu, L., Zhang, L.: Learning object placement via dual-path graph completion. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13677, pp. 373–389. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_23
Zhu, S., Lin, Z., Cohen, S., Kuen, J., Zhang, Z., Chen, C.: Topnet: transformer-based object placement network for image compositing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1838–1847 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Canet Tarrés, G. et al. (2025). Thinking Outside the BBox: Unconstrained Generative Object Compositing. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15120. Springer, Cham. https://doi.org/10.1007/978-3-031-73033-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-73033-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73032-0
Online ISBN: 978-3-031-73033-7
eBook Packages: Computer ScienceComputer Science (R0)