Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thinking Outside the BBox: Unconstrained Generative Object Compositing

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Compositing an object into an image involves multiple non-trivial sub-tasks such as object placement and scaling, color/lighting harmonization, viewpoint/geometry adjustment, and shadow/reflection generation. Recent generative image compositing methods leverage diffusion models to handle multiple sub-tasks at once. However, existing models face limitations due to their reliance on masking the original object during training, which constrains their generation to the input mask. Furthermore, obtaining an accurate input mask specifying the location and scale of the object in a new image can be highly challenging. To overcome such limitations, we define a novel problem of unconstrained generative object compositing, i.e., the generation is not bounded by the mask, and train a diffusion-based model on a synthesized paired dataset. Our first-of-its-kind model is able to generate object effects such as shadows and reflections that go beyond the mask, enhancing image realism. Additionally, if an empty mask is provided, our model automatically places the object in diverse natural locations and scales, accelerating the compositing workflow. Our model outperforms existing object placement and compositing models in various quality metrics and user studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://pixabay.com/

  2. Alaluf, Y., Tov, O., Mokady, R., Gal, R., Bermano, A.: Hyperstyle: stylegan inversion with hypernetworks for real image editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18511–18521 (2022)

    Google Scholar 

  3. Avrahami, O., Fried, O., Lischinski, D.: Blended latent diffusion. ACM Trans. Graph. (TOG) 42(4), 1–11 (2023)

    Article  Google Scholar 

  4. Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of natural images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18208–18218 (2022)

    Google Scholar 

  5. Azadi, S., Pathak, D., Ebrahimi, S., Darrell, T.: Compositional GAN: learning image-conditional binary composition. Int. J. Comput. Vision 128, 2570–2585 (2020)

    Article  Google Scholar 

  6. Bau, D., et al.: Semantic photo manipulation with a generative image prior. arXiv preprint arXiv:2005.07727 (2020)

  7. Chen, H., Zhang, Y., Wang, X., Duan, X., Zhou, Y., Zhu, W.: Disenbooth: disentangled parameter-efficient tuning for subject-driven text-to-image generation. arXiv preprint arXiv:2305.03374 (2023)

  8. Chen, W., et al.: Subject-driven text-to-image generation via apprenticeship learning. arXiv preprint arXiv:2304.00186 (2023)

  9. Chen, X., Huang, L., Liu, Y., Shen, Y., Zhao, D., Zhao, H.: Anydoor: zero-shot object-level image customization. arXiv preprint arXiv:2307.09481 (2023)

  10. Dvornik, N., Mairal, J., Schmid, C.: Modeling visual context is key to augmenting object detection datasets. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 364–380 (2018)

    Google Scholar 

  11. Dvornik, N., Mairal, J., Schmid, C.: On the importance of visual context for data augmentation in scene understanding. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 2014–2028 (2019)

    Article  Google Scholar 

  12. Fang, H.S., Sun, J., Wang, R., Gou, M., Li, Y.L., Lu, C.: Instaboost: boosting instance segmentation via probability map guided copy-pasting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 682–691 (2019)

    Google Scholar 

  13. Fu, S., et al.: Dreamsim: learning new dimensions of human visual similarity using synthetic data. arXiv preprint arXiv:2306.09344 (2023)

  14. Gal, R., et al.: An image is worth one word: personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618 (2022)

  15. Gu, S., Bao, J., Yang, H., Chen, D., Wen, F., Yuan, L.: Mask-guided portrait editing with conditional GANs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3436–3445 (2019)

    Google Scholar 

  16. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626 (2022)

  17. Hessel, J., Holtzman, A., Forbes, M., Le Bras, R., Choi, Y.: Clipscore: a reference-free evaluation metric for image captioning. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 7514–7528 (2021)

    Google Scholar 

  18. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  19. Jia, X., et al.: Taming encoder for zero fine-tuning image customization with text-to-image diffusion models. arXiv preprint arXiv:2304.02642 (2023)

  20. Karsch, K., Hedau, V., Forsyth, D., Hoiem, D.: Rendering synthetic objects into legacy photographs. ACM Trans. Graph. (TOG) 30(6), 1–12 (2011)

    Article  Google Scholar 

  21. Kawar, B., et al.: Imagic: text-based real image editing with diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6007–6017 (2023)

    Google Scholar 

  22. Kholgade, N., Simon, T., Efros, A., Sheikh, Y.: 3D object manipulation in a single photograph using stock 3d models. ACM Trans. Graph. (TOG) 33(4), 1–12 (2014)

    Article  Google Scholar 

  23. Kim, G., Kwon, T., Ye, J.C.: Diffusionclip: text-guided diffusion models for robust image manipulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2426–2435 (2022)

    Google Scholar 

  24. Kim, K., Park, S., Lee, J., Choo, J.: Reference-based image composition with sketch via structure-aware diffusion model. arXiv preprint arXiv:2304.09748 (2023)

  25. Kulal, S., et al.: Putting people in their place: affordance-aware human insertion into scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17089–17099 (2023)

    Google Scholar 

  26. Lalonde, J.F., Hoiem, D., Efros, A.A., Rother, C., Winn, J., Criminisi, A.: Photo clip art. ACM Trans. Graph. (TOG) 26(3), 3-es (2007)

    Google Scholar 

  27. Lee, D., Liu, S., Gu, J., Liu, M.Y., Yang, M.H., Kautz, J.: Context-aware synthesis and placement of object instances. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  28. Li, D., Li, J., Hoi, S.C.: Blip-diffusion: pre-trained subject representation for controllable text-to-image generation and editing. arXiv preprint arXiv:2305.14720 (2023)

  29. Li, T., Ku, M., Wei, C., Chen, W.: Dreamedit: subject-driven image editing. arXiv preprint arXiv:2306.12624 (2023)

  30. Lin, C.H., Yumer, E., Wang, O., Shechtman, E., Lucey, S.: ST-GAN: spatial transformer generative adversarial networks for image compositing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9455–9464 (2018)

    Google Scholar 

  31. Ling, H., Kreis, K., Li, D., Kim, S.W., Torralba, A., Fidler, S.: Editgan: high-precision semantic image editing. Adv. Neural. Inf. Process. Syst. 34, 16331–16345 (2021)

    Google Scholar 

  32. Liu, D., Long, C., Zhang, H., Yu, H., Dong, X., Xiao, C.: Arshadowgan: shadow generative adversarial network for augmented reality in single light scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8139–8148 (2020)

    Google Scholar 

  33. Liu, L., et al.: OPA: object placement assessment dataset. arXiv preprint arXiv:2107.01889 (2021)

  34. Liu, X., et al.: More control for free! image synthesis with semantic diffusion guidance. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 289–299 (2023)

    Google Scholar 

  35. Lu, L., Zhang, B., Niu, L.: Dreamcom: finetuning text-guided inpainting model for image composition. arXiv preprint arXiv:2309.15508 (2023)

  36. Lu, S., Liu, Y., Kong, A.W.K.: TF-icon: diffusion-based training-free cross-domain image composition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2294–2305 (2023)

    Google Scholar 

  37. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Repaint: inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471 (2022)

    Google Scholar 

  38. Meng, C., et al.: Sdedit: guided image synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073 (2021)

  39. Miao, J., et al.: Large-scale video panoptic segmentation in the wild: a benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21033–21043 (2022)

    Google Scholar 

  40. Niu, L., Liu, Q., Liu, Z., Li, J.: Fast object placement assessment. arXiv preprint arXiv:2205.14280 (2022)

  41. Oquab, M., et al.: Dinov2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

  42. Qi, L., et al.: Fine-grained entity segmentation. arXiv preprint arXiv:2211.05776 (2022)

  43. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  44. Remez, T., Huang, J., Brown, M.: Learning to segment via cut-and-paste. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 37–52 (2018)

    Google Scholar 

  45. Richardson, E., et al.: Encoding in style: a stylegan encoder for image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2287–2296 (2021)

    Google Scholar 

  46. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  47. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: Dreambooth: fine tuning text-to-image diffusion models for subject-driven generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510 (2023)

    Google Scholar 

  48. Seyfioglu, M.S., Bouyarmane, K., Kumar, S., Tavanaei, A., Tutar, I.B.: Diffuse to choose: enriching image conditioned inpainting in latent diffusion models for virtual try-all. arXiv preprint arXiv:2401.13795 (2024)

  49. Shi, J., Xiong, W., Lin, Z., Jung, H.J.: Instantbooth: personalized text-to-image generation without test-time finetuning. arXiv preprint arXiv:2304.03411 (2023)

  50. Song, Y., et al.: Objectstitch: generative object compositing. arXiv preprint arXiv:2212.00932 (2022)

  51. Song, Y., et al.: Imprint: generative object compositing by learning identity-preserving representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8048–8058 (2024)

    Google Scholar 

  52. Tan, F., Bernier, C., Cohen, B., Ordonez, V., Barnes, C.: Where and who? Automatic semantic-aware person composition. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1519–1528. IEEE (2018)

    Google Scholar 

  53. Tripathi, S., Chandra, S., Agrawal, A., Tyagi, A., Rehg, J.M., Chari, V.: Learning to generate synthetic data via compositing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 461–470 (2019)

    Google Scholar 

  54. Volokitin, A., Susmelj, I., Agustsson, E., Van Gool, L., Timofte, R.: Efficiently detecting plausible locations for object placement using masked convolutions. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12538, pp. 252–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66823-5_15

    Chapter  Google Scholar 

  55. Wang, T., et al.: Pretraining is all you need for image-to-image translation. arXiv preprint arXiv:2205.12952 (2022)

  56. Wang, T., Hu, X., Heng, P.A., Fu, C.W.: Instance shadow detection with a single-stage detector. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3259–3273 (2022)

    Google Scholar 

  57. Wang, X., Yu, K., Dong, C., Tang, X., Loy, C.C.: Deep network interpolation for continuous imagery effect transition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1692–1701 (2019)

    Google Scholar 

  58. Xie, S., Zhang, Z., Lin, Z., Hinz, T., Zhang, K.: Smartbrush: text and shape guided object inpainting with diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22428–22437 (2023)

    Google Scholar 

  59. Xu, N., Price, B., Cohen, S., Huang, T.: Deep image matting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2970–2979 (2017)

    Google Scholar 

  60. Xu, N., et al.: Youtube-VOS: sequence-to-sequence video object segmentation. In: Proceedings of the European Conference on Computer Vision, pp. 585–601 (2018)

    Google Scholar 

  61. Xue, B., Ran, S., Chen, Q., Jia, R., Zhao, B., Tang, X.: DCCF: deep comprehensible color filter learning framework for high-resolution image harmonization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13667, pp. 300–316. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20071-7_18

    Chapter  Google Scholar 

  62. Yang, B., et al.: Paint by example: exemplar-based image editing with diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18381–18391 (2023)

    Google Scholar 

  63. Yang, H., Zhang, R., Guo, X., Liu, W., Zuo, W., Luo, P.: Towards photo-realistic virtual try-on by adaptively generating-preserving image content. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7850–7859 (2020)

    Google Scholar 

  64. Yu, T., et al.: Inpaint anything: segment anything meets image inpainting. arXiv preprint arXiv:2304.06790 (2023)

  65. Yu, X., et al.: Mvimgnet: a large-scale dataset of multi-view images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9150–9161 (2023)

    Google Scholar 

  66. Yuan, Z., Cao, M., Wang, X., Qi, Z., Yuan, C., Shan, Y.: Customnet: zero-shot object customization with variable-viewpoints in text-to-image diffusion models. arXiv preprint arXiv:2310.19784 (2023)

  67. Zhan, F., Zhu, H., Lu, S.: Spatial fusion GAN for image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3653–3662 (2019)

    Google Scholar 

  68. Zhang, B., et al.: Controlcom: controllable image composition using diffusion model. arXiv preprint arXiv:2308.10040 (2023)

  69. Zhang, L., Wen, T., Min, J., Wang, J., Han, D., Shi, J.: Learning object placement by inpainting for compositional data augmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 566–581. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_34

    Chapter  Google Scholar 

  70. Zhang, S.H., Zhou, Z.P., Liu, B., Dong, X., Hall, P.: What and where: a context-based recommendation system for object insertion. Comput. Vis. Media 6, 79–93 (2020)

    Article  Google Scholar 

  71. Zhang, X., Guo, J., Yoo, P., Matsuo, Y., Iwasawa, Y.: Paste, inpaint and harmonize via denoising: subject-driven image editing with pre-trained diffusion model. arXiv preprint arXiv:2306.07596 (2023)

  72. Zheng, H., et al.: Image inpainting with cascaded modulation GAN and object-aware training. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13676, pp. 277–296. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19787-1_16

    Chapter  Google Scholar 

  73. Zhou, S., Liu, L., Niu, L., Zhang, L.: Learning object placement via dual-path graph completion. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13677, pp. 373–389. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_23

    Chapter  Google Scholar 

  74. Zhu, S., Lin, Z., Cohen, S., Kuen, J., Zhang, Z., Chen, C.: Topnet: transformer-based object placement network for image compositing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1838–1847 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma Canet Tarrés .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12580 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Canet Tarrés, G. et al. (2025). Thinking Outside the BBox: Unconstrained Generative Object Compositing. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15120. Springer, Cham. https://doi.org/10.1007/978-3-031-73033-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73033-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73032-0

  • Online ISBN: 978-3-031-73033-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics