Nothing Special   »   [go: up one dir, main page]

Skip to main content

High-Fidelity Modeling of Generalizable Wrinkle Deformation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15139))

Included in the following conference series:

  • 5 Accesses

Abstract

This paper proposes a generalizable model to synthesize high-fidelity clothing wrinkle deformation in 3D by learning from real data. Given the complex deformation behaviors of real-world clothing, this task presents significant challenges, primarily due to the lack of accurate ground-truth data. Obtaining high-fidelity 3D deformations requires special equipment like a multi-camera system, which is not easily scalable. To address this challenge, we decompose the clothing into a base surface and fine wrinkles; and introduce a new method that can generate wrinkles as high-frequency 3D displacement from coarse clothing deformation. Our method is conditioned by Green-Lagrange strain field—a local rotation-invariant measurement that is independent of body and clothing topology, enhancing its generalizability. Using limited real data (e.g., 3K) of garment meshes, we train a diffusion model that can generate high-fidelity wrinkles from a coarse clothing mesh, conditioned on its strain field. Practically, we obtain the coarse clothing mesh using a body-conditioned VAE, ensuring compatibility of the deformation with the body pose. In our experiments, we demonstrate that our generative wrinkle model outperforms existing methods by synthesizing high-fidelity wrinkle deformation from novel body poses and clothing while preserving the quality comparable to the one from training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharoni, H., Todorova, D.V., Albarrán, O., Goehring, L., Kamien, R.D., Katifori, E.: The smectic order of wrinkles. Nat. Commun. 15809 (2017)

    Google Scholar 

  2. Bertiche, H., Madadi, M., Escalera, S.: Pbns: physically based neural simulation for unsupervised garment pose space deformation. ACM TOG 1–14 (2021)

    Google Scholar 

  3. Bertiche, H., Madadi, M., Escalera, S.: Neural cloth simulation. ACM TOG (2022)

    Google Scholar 

  4. Bhatnagar, B.L., Sminchisescu, C., Theobalt, C., Pons-Moll, G.: Loopreg: self-supervised learning of implicit surface correspondences, pose and shape for 3d human mesh registration. In: NeurIPS, pp. 12909–12922 (2020)

    Google Scholar 

  5. Bouaziz, S., Martin, S., Liu, T., Kavan, L., Pauly, M.: Projective dynamics: fusing constraint projections for fast simulation. ACM TOG (2014)

    Google Scholar 

  6. Chen, L., et al.: Deep deformation detail synthesis for thin shell models. In: Computer Graphics Forum (2023)

    Google Scholar 

  7. Chen, Z., Chen, H.Y., Kaufman, D.M., Skouras, M., Vouga, E.: Fine wrinkling on coarsely meshed thin shells. ACM TOG 1–32 (2021)

    Google Scholar 

  8. Chen, Z., Kaufman, D., Skouras, M., Vouga, E.: Complex wrinkle field evolution. ACM TOG 1–19 (2023)

    Google Scholar 

  9. Chung, H., Kim, J., Mccann, M.T., Klasky, M.L., Ye, J.C.: Diffusion posterior sampling for general noisy inverse problems. In: ICLR (2022)

    Google Scholar 

  10. Du, T., et al.: Diffpd: differentiable projective dynamics. ACM TOG 1–21 (2021)

    Google Scholar 

  11. Feng, X., Huang, W., Xu, W., Wang, H.: Learning-based bending stiffness parameter estimation by a drape tester. ACM TOG 1–16 (2022)

    Google Scholar 

  12. Furukawa, Y., Ponce, J.: Dense 3d motion capture from synchronized video streams. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  13. Grigorev, A., Black, M.J., Hilliges, O.: Hood: hierarchical graphs for generalized modelling of clothing dynamics. In: CVPR, pp. 16965–16974 (2023)

    Google Scholar 

  14. Guo, J., Li, J., Narain, R., Park, H.S.: Inverse simulation: reconstructing dynamic geometry of clothed humans via optimal control. In: CVPR, pp. 14698–14707 (2021)

    Google Scholar 

  15. Guo, J., et al.: Diffusion shape prior for wrinkle-accurate cloth registration. arXiv preprint arXiv:2311.05828 (2023)

  16. Halimi, O., et al.: Pattern-based cloth registration and sparse-view animation. ACM TOG 1–17 (2022)

    Google Scholar 

  17. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  18. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS, pp. 6840–6851 (2020)

    Google Scholar 

  19. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)

  20. Hu, Y., et al.: Difftaichi: differentiable programming for physical simulation. In: ICLR (2020)

    Google Scholar 

  21. Işık, M., et al.: Humanrf: high-fidelity neural radiance fields for humans in motion. ACM TOG 1–12 (2023)

    Google Scholar 

  22. Jafarian, Y., Park, H.S.: Learning high fidelity depths of dressed humans by watching social media dance videos. In: CVPR, pp. 12753–12762 (2021)

    Google Scholar 

  23. Kavan, L., Gerszewski, D., Bargteil, A.W., Sloan, P.P.: Physics-inspired upsampling for cloth simulation in games. ACM TOG 1–10 (2011)

    Google Scholar 

  24. Kim, B., et al.: Chupa: carving 3d clothed humans from skinned shape priors using 2d diffusion probabilistic models. arXiv preprint arXiv:2305.11870 (2023)

  25. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  26. Lähner, Z., Cremers, D., Tung, T.: DeepWrinkles: accurate and realistic clothing modeling. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 698–715. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_41

    Chapter  Google Scholar 

  27. Le, B.H., Deng, Z.: Smooth skinning decomposition with rigid bones. ACM TOG 1–10 (2012)

    Google Scholar 

  28. Li, J., et al.: An implicit frictional contact solver for adaptive cloth simulation. ACM TOG 1–15 (2018)

    Google Scholar 

  29. Li, Y., Du, T., Wu, K., Xu, J., Matusik, W.: Diffcloth: differentiable cloth simulation with dry frictional contact. ACM TOG 1–20 (2022)

    Google Scholar 

  30. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: a skinned multi-person linear model. ACM TOG 1–16 (2015)

    Google Scholar 

  31. Ma, Q., et al.: Learning to dress 3d people in generative clothing. In: CVPR, pp. 6469–6478 (2020)

    Google Scholar 

  32. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: Amass: archive of motion capture as surface shapes. In: ICCV, pp. 5442–5451 (2019)

    Google Scholar 

  33. Müller, M., Chentanez, N.: Wrinkle meshes. In: Symposium on Computer Animation, pp. 85–91 (2010)

    Google Scholar 

  34. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Representation 109–118 (2007)

    Google Scholar 

  35. Narain, R., Pfaff, T., O’Brien, J.F.: Folding and crumpling adaptive sheets. ACM TOG 1–8 (2013)

    Google Scholar 

  36. Narain, R., Samii, A., O’brien, J.F.: Adaptive anisotropic remeshing for cloth simulation. ACM TOG 1–10 (2012)

    Google Scholar 

  37. Pan, X., et al.: Predicting loose-fitting garment deformations using bone-driven motion networks. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1–10 (2022)

    Google Scholar 

  38. Patel, C., Liao, Z., Pons-Moll, G.: Tailornet: predicting clothing in 3d as a function of human pose, shape and garment style. In: CVPR, pp. 7365–7375 (2020)

    Google Scholar 

  39. Peng, S., et al.: Neural body: implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: CVPR (2021)

    Google Scholar 

  40. Pons-Moll, G., Pujades, S., Hu, S., Black, M.J.: Clothcap: seamless 4d clothing capture and retargeting. ACM TOG 1–15 (2017)

    Google Scholar 

  41. Qiao, Y.L., Liang, J., Koltun, V., Lin, M.C.: Scalable differentiable physics for learning and control. In: ICML, pp. 7847–7856 (2020)

    Google Scholar 

  42. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: MICCAI, pp. 234–241 (2015)

    Google Scholar 

  43. Saito, S., Yang, J., Ma, Q., Black, M.J.: Scanimate: weakly supervised learning of skinned clothed avatar networks. In: CVPR, pp. 2886–2897 (2021)

    Google Scholar 

  44. Santesteban, I., Otaduy, M.A., Casas, D.: Learning-based animation of clothing for virtual try-on. Comput. Graph. Forum 355–366 (2019)

    Google Scholar 

  45. Santesteban, I., Otaduy, M.A., Casas, D.: Snug: self-supervised neural dynamic garments. In: CVPR, pp. 8140–8150 (2022)

    Google Scholar 

  46. Shao, R., Zheng, Z., Zhang, H., Sun, J., Liu, Y.: DiffuStereo: high quality human reconstruction via diffusion-based stereo using sparse cameras. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13692, pp. 702–720. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_41

  47. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: NeurIPS (2015)

    Google Scholar 

  48. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: ICLR (2021)

    Google Scholar 

  49. Stein, O., Jacobson, A., Wardetzky, M., Grinspun, E.: A smoothness energy without boundary distortion for curved surfaces. ACM TOG 1–17 (2020)

    Google Scholar 

  50. Wang, H., O’Brien, J.F., Ramamoorthi, R.: Data-driven elastic models for cloth: modeling and measurement. ACM TOG 1–12 (2011)

    Google Scholar 

  51. Yoon, J.S., Yu, Z., Park, J., Park, H.S.: Humbi: a large multiview dataset of human body expressions and benchmark challenge. IEEE TPAMI, pp. 623–640 (2021)

    Google Scholar 

  52. Zhang, C., Pujades, S., Black, M.J., Pons-Moll, G.: Detailed, accurate, human shape estimation from clothed 3d scan sequences. In: CVPR, pp. 4191–4200 (2017)

    Google Scholar 

  53. Zhang, H., et al.: Pymaf: 3d human pose and shape regression with pyramidal mesh alignment feedback loop. In: ICCV, pp. 11446–11456 (2021)

    Google Scholar 

  54. Zhang, J.E., Dumas, J., Fei, Y., Jacobson, A., James, D.L., Kaufman, D.M.: Progressive simulation for cloth quasistatics. ACM TOG 1–16 (2022)

    Google Scholar 

  55. Zhang, M., Ceylan, D., Mitra, N.J.: Motion guided deep dynamic 3d garments. ACM TOG 1–12 (2022)

    Google Scholar 

  56. Zhang, M., Wang, T., Ceylan, D., Mitra, N.J.: Deep detail enhancement for any garment. In: Computer Graphics Forum, pp. 399–411 (2021)

    Google Scholar 

  57. Zhong, Y.D., Han, J., Brikis, G.O.: Differentiable physics simulations with contacts: do they have correct gradients wrt position, velocity and control? arXiv preprint arXiv:2207.05060 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Soo Park .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 17290 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, J., Yoon, J.S., Saito, S., Shiratori, T., Park, H.S. (2025). High-Fidelity Modeling of Generalizable Wrinkle Deformation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15139. Springer, Cham. https://doi.org/10.1007/978-3-031-73004-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73004-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73003-0

  • Online ISBN: 978-3-031-73004-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics