Nothing Special   »   [go: up one dir, main page]

Skip to main content

Beyond the Data Imbalance: Employing the Heterogeneous Datasets for Vehicle Maneuver Prediction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Predicting the maneuvers of surrounding vehicles is imperative for the safe navigation of autonomous vehicles. However, naturalistic driving datasets tend to be highly imbalanced, with a bias towards the “going straight” maneuver. Consequently, learning and accurately predicting turning maneuvers pose significant challenges. In this study, we propose a novel two-stage maneuver learning method that can overcome such strong biases by leveraging two heterogeneous datasets in a complementary manner. In the first training phase, we utilize an intersection-centric dataset characterized by balanced distribution of maneuver classes to learn the representations of each maneuver. Subsequently, in the second training phase, we incorporate an ego-centric driving dataset to account for various geometrical road shapes, by transferring the knowledge of geometric diversity to the maneuver prediction model. To facilitate this, we constructed an in-house intersection-centric trajectory dataset with a well-balanced maneuver distribution. By harnessing the power of heterogeneous datasets, our framework significantly improves maneuver prediction performance, particularly for minority maneuver classes such as turning maneuvers. The dataset is available at https://github.com/KAIST-VDCLab/VDC-Trajectory-Dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morai simulator. https://www.morai.ai/drive

  2. Azadani, M.N., Boukerche, A.: A novel multimodal vehicle path prediction method based on temporal convolutional networks. IEEE Trans. Intell. Transp. Syst. 23(12), 25384–25395 (2022)

    Article  Google Scholar 

  3. Bock, J., Krajewski, R., Moers, T., Runde, S., Vater, L., Eckstein, L.: The IND dataset: a drone dataset of naturalistic road user trajectories at German intersections. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1929–1934. IEEE (2020)

    Google Scholar 

  4. Chang, M.F., et al.: Argoverse: 3D tracking and forecasting with rich maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8748–8757 (2019)

    Google Scholar 

  5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  6. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  7. Cieslak, D.A., Chawla, N.V., Striegel, A.: Combating imbalance in network intrusion datasets. In: GrC, pp. 732–737. Citeseer (2006)

    Google Scholar 

  8. Cui, Y., Song, Y., Sun, C., Howard, A., Belongie, S.: Large scale fine-grained categorization and domain-specific transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4109–4118 (2018)

    Google Scholar 

  9. Deepa, T., Punithavalli, M.: An e-smote technique for feature selection in high-dimensional imbalanced dataset. In: 2011 3rd International Conference on Electronics Computer Technology, vol. 2, pp. 322–324. IEEE (2011)

    Google Scholar 

  10. Drummond, C., Holte, R.C., et al.: C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. In: Workshop on Learning from Imbalanced Datasets II, vol. 11, pp. 1–8. Citeseer (2003)

    Google Scholar 

  11. Feng, X., Cen, Z., Hu, J., Zhang, Y.: Vehicle trajectory prediction using intention-based conditional variational autoencoder. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3514–3519. IEEE (2019)

    Google Scholar 

  12. Girase, H., et al.: Loki: long term and key intentions for trajectory prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9803–9812 (2021)

    Google Scholar 

  13. Goldhammer, M., Köhler, S., Zernetsch, S., Doll, K., Sick, B., Dietmayer, K.: Intentions of vulnerable road users-detection and forecasting by means of machine learning. IEEE Trans. Intell. Transp. Syst. 21(7), 3035–3045 (2019)

    Article  Google Scholar 

  14. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  15. Hu, Y., Li, Y., Huang, H., Lee, J., Yuan, C., Zou, G.: A high-resolution trajectory data driven method for real-time evaluation of traffic safety. Accid. Anal. Prev. 165, 106503 (2022)

    Article  Google Scholar 

  16. Colyar, J.: US highway 101 dataset. Federal Highway Administration (FHWA), Technical report FHWA-HRT-07-030 (2007)

    Google Scholar 

  17. Jeon, H., Choi, J., Kum, D.: Scale-net: scalable vehicle trajectory prediction network under random number of interacting vehicles via edge-enhanced graph convolutional neural network. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2095–2102. IEEE (2020)

    Google Scholar 

  18. Jeon, H., Kim, S., Lee, K., Kang, D., Choi, J., Kum, D.: Are reactions to ego vehicles predictable without data?: a semi-supervised approach. IEEE Trans. Intell. Transp. Syst. 24(6), 6477–6490 (2023)

    Article  Google Scholar 

  19. Kim, S., Jeon, H., Choi, J.W., Kum, D.: Diverse multiple trajectory prediction using a two-stage prediction network trained with lane loss. IEEE Robot. Autom. Lett. 8(4), 2038–2045 (2022)

    Article  Google Scholar 

  20. Kozerawski, J., Sharan, M., Yu, R.: Taming the long tail of deep probabilistic forecasting. arXiv preprint arXiv:2202.13418 (2022)

  21. Liang, M., et al.: Learning lane graph representations for motion forecasting. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 541–556. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_32

    Chapter  Google Scholar 

  22. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  23. Makansi, O., Çiçek, Ö., Marrakchi, Y., Brox, T.: On exposing the challenging long tail in future prediction of traffic actors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13147–13157 (2021)

    Google Scholar 

  24. Marron, J.S., Wand, M.P.: Exact mean integrated squared error. Ann. Stat. 20(2), 712–736 (1992)

    Article  MathSciNet  Google Scholar 

  25. Mirus, F., Stewart, T.C., Conradt, J.: The importance of balanced data sets: analyzing a vehicle trajectory prediction model based on neural networks and distributed representations. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  26. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  27. Park, D., Ryu, H., Yang, Y., Cho, J., Kim, J., Yoon, K.J.: Leveraging future relationship reasoning for vehicle trajectory prediction. arXiv preprint arXiv:2305.14715 (2023)

  28. Peng, J., Bu, X., Sun, M., Zhang, Z., Tan, T., Yan, J.: Large-scale object detection in the wild from imbalanced multi-labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9709–9718 (2020)

    Google Scholar 

  29. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory prediction in crowded scenes. In: European Conference on Computer Vision (ECCV), vol. 2 (2020)

    Google Scholar 

  30. Shangguan, Q., Fu, T., Wang, J., Fu, L., et al.: A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns. Accid. Anal. Prev. 164, 106500 (2022)

    Article  Google Scholar 

  31. Shen, L., Lin, Z., Huang, Q.: Relay backpropagation for effective learning of deep convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 467–482. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_29

    Chapter  Google Scholar 

  32. Strigel, E., Meissner, D., Seeliger, F., Wilking, B., Dietmayer, K.: The KO-per intersection laserscanner and video dataset. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1900–1901. IEEE (2014)

    Google Scholar 

  33. Varadarajan, B., et al.: Multipath++: efficient information fusion and trajectory aggregation for behavior prediction. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 7814–7821. IEEE (2022)

    Google Scholar 

  34. Wang, J., Xu, M., Wang, H., Zhang, J.: Classification of imbalanced data by using the smote algorithm and locally linear embedding. In: 2006 8th International Conference on Signal Processing, vol. 3. IEEE (2006)

    Google Scholar 

  35. Wang, K., Xue, Q., Lu, J.J.: Risky driver recognition with class imbalance data and automated machine learning framework. Int. J. Environ. Res. Public Health 18(14), 7534 (2021)

    Article  Google Scholar 

  36. Westny, T., Frisk, E., Olofsson, B.: Vehicle behavior prediction and generalization using imbalanced learning techniques. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 2003–2010. IEEE (2021)

    Google Scholar 

  37. Yang, D., Li, L., Redmill, K., Özgüner, Ü.: Top-view trajectories: a pedestrian dataset of vehicle-crowd interaction from controlled experiments and crowded campus. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 899–904. IEEE (2019)

    Google Scholar 

  38. Zhou, Z., Ye, L., Wang, J., Wu, K., Lu, K.: HIVT: hierarchical vector transformer for multi-agent motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8823–8833 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Autonomous Driving Development Center, AVP Division, Hyundai Motor Company and the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) under Grants 2022R1A2C200494413.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanmin Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jeon, H., Kim, S., Syamil, A.R., Kim, J., Kum, D. (2025). Beyond the Data Imbalance: Employing the Heterogeneous Datasets for Vehicle Maneuver Prediction. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15114. Springer, Cham. https://doi.org/10.1007/978-3-031-72992-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72992-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72991-1

  • Online ISBN: 978-3-031-72992-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics