Abstract
Recent advancements in camera-based 3D object detection have introduced cross-modal knowledge distillation to bridge the performance gap with LiDAR 3D detectors, leveraging the precise geometric information in LiDAR point clouds. However, existing cross-modal knowledge distillation methods tend to overlook the inherent imperfections of LiDAR, such as the ambiguity of measurements on distant or occluded objects, which should not be transferred to the image detector. To mitigate these imperfections in LiDAR teacher, we propose a novel method that leverages aleatoric uncertainty-free features from ground truth labels.In contrast to conventional label guidance approaches, we approximate the inverse function of the teacher’s head to effectively embed label inputs into feature space. This approach provides additional accurate guidance alongside LiDAR teacher, thereby boosting the performance of the image detector.Additionally, we introduce feature partitioning, which effectively transfers knowledge from the teacher modality while preserving the distinctive features of the student, thereby maximizing the potential of both modalities. Experimental results demonstrate that our approach improves mAP and NDS by 5.1 points and 4.9 points compared to the baseline model, proving the effectiveness of our approach. The code is available at https://github.com/sanmin0312/LabelDistill.
Y. Kim—Work done at Korea Advanced Institute of Science and Technology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brazil, G., Liu, X.: M3D-RPN: monocular 3D region proposal network for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9287–9296 (2019)
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
Cao, W., Zhang, Y., Gao, J., Cheng, A., Cheng, K., Cheng, J.: PKD: general distillation framework for object detectors via Pearson correlation coefficient. In: Advances in Neural Information Processing Systems, vol. 35, pp. 15394–15406 (2022)
Chen, D., Li, J., Guizilini, V., Ambrus, R.A., Gaidon, A.: Viewpoint equivariance for multi-view 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9213–9222 (2023)
Chen, S., Wang, X., Cheng, T., Zhang, Q., Huang, C., Liu, W.: Polar parametrization for vision-based surround-view 3D detection. arXiv preprint arXiv:2206.10965 (2022)
Chen, Z., Li, Z., Zhang, S., Fang, L., Jiang, Q., Zhao, F.: Bevdistill: cross-modal BEV distillation for multi-view 3D object detection. In: International Conference on Learning Representations (2023)
Cho, H., Choi, J., Baek, G., Hwang, W.: ITKD: interchange transfer-based knowledge distillation for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13540–13549 (2023)
Chong, Z., et al.: Monodistill: learning spatial features for monocular 3D object detection. In: International Conference on Learning Representations (2022)
Dai, X., et al.: General instance distillation for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7842–7851 (2021)
Feng, C., Jie, Z., Zhong, Y., Chu, X., Ma, L.: Aedet: azimuth-invariant multi-view 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21580–21588 (2023)
Guizilini, V., Ambrus, R., Pillai, S., Raventos, A., Gaidon, A.: 3D packing for self-supervised monocular depth estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2485–2494 (2020)
Hahner, M., et al.: LiDAR snowfall simulation for robust 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16364–16374 (2022)
Hahner, M., Sakaridis, C., Dai, D., Van Gool, L.: FOG simulation on real lidar point clouds for 3D object detection in adverse weather. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15283–15292 (2021)
Hao, M., Liu, Y., Zhang, X., Sun, J.: LabelEnc: a new intermediate supervision method for object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 529–545. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_32
Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)
Hong, Y., Dai, H., Ding, Y.: Cross-modality knowledge distillation network for monocular 3D object detection. In: European Conference on Computer Vision, pp. 87–104 (2022)
Huang, J., Huang, G.: Bevdet4d: exploit temporal cues in multi-camera 3D object detection. arXiv preprint arXiv:2203.17054 (2022)
Huang, J., Huang, G., Zhu, Z., Du, D.: Bevdet: high-performance multi-camera 3D object detection in bird-eye-view. arXiv preprint arXiv:2112.11790 (2021)
Huang, L., et al.: Leveraging vision-centric multi-modal expertise for 3D object detection. In: Thirty-Seventh Conference on Neural Information Processing Systems (2023)
Huang, P., et al.: TiG-BEV: multi-view BEV 3D object detection via target inner-geometry learning. arXiv preprint arXiv:2212.13979 (2022)
Huang, Y., et al.: Label-guided auxiliary training improves 3D object detector. In: European Conference on Computer Vision, pp. 684–700 (2022)
Jang, S., Jo, D.U., Hwang, S.J., Lee, D., Ji, D.: STXD: structural and temporal cross-modal distillation for multi-view 3D object detection. In: Thirty-Seventh Conference on Neural Information Processing Systems (2023)
Jiang, Y., et al.: Polarformer: multi-camera 3D object detection with polar transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1042–1050 (2023)
Kim, S., Kim, Y., Lee, I.J., Kum, D.: Predict to detect: prediction-guided 3D object detection using sequential images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 18057–18066 (2023)
Klingner, M., et al.: X3KD: knowledge distillation across modalities, tasks and stages for multi-camera 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13343–13353 (2023)
Koh, J., Lee, J., Lee, Y., Kim, J., Choi, J.W.: Mgtanet: encoding sequential lidar points using long short-term motion-guided temporal attention for 3D object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1179–1187 (2023)
Li, Y., Chen, Y., Qi, X., Li, Z., Sun, J., Jia, J.: Unifying voxel-based representation with transformer for 3D object detection. In: Advances in Neural Information Processing Systems, pp. 18442–18455 (2022)
Li, Y., Bao, H., Ge, Z., Yang, J., Sun, J., Li, Z.: Bevstereo: enhancing depth estimation in multi-view 3D object detection with temporal stereo. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1486–1494 (2023)
Li, Y., et al.: Bevdepth: acquisition of reliable depth for multi-view 3D object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1477–1485 (2023)
Li, Z., et al.: Bevformer: learning bird’s-eye-view representation from multi-camera images via spatiotemporal transformers. In: European Conference on Computer Vision, pp. 1–18 (2022)
Li, Z., Yu, Z., Wang, W., Anandkumar, A., Lu, T., Alvarez, J.M.: FB-BEV: BEV representation from forward-backward view transformations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6919–6928 (2023)
Li, Z., Qu, Z., Zhou, Y., Liu, J., Wang, H., Jiang, L.: Diversity matters: fully exploiting depth clues for reliable monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2791–2800 (2022)
Lin, X., Lin, T., Pei, Z., Huang, L., Su, Z.: Sparse4d: multi-view 3D object detection with sparse spatial-temporal fusion. arXiv preprint arXiv:2211.10581 (2022)
Liu, Y., Chen, K., Liu, C., Qin, Z., Luo, Z., Wang, J.: Structured knowledge distillation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2604–2613 (2019)
Liu, Y., Wang, T., Zhang, X., Sun, J.: PETR: position embedding transformation for multi-view 3D object detection. In: European Conference on Computer Vision, pp. 531–548 (2022)
Liu, Y., et al.: PETRV2: a unified framework for 3D perception from multi-camera images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3262–3272 (2023)
Liu, Z., Wu, Z., Tóth, R.: Smoke: single-stage monocular 3D object detection via keypoint estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 996–997 (2020)
Liu, Z., Zhu, L.: Label-guided attention distillation for lane segmentation. Neurocomputing 438, 312–322 (2021)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019)
Lu, Y., et al.: Geometry uncertainty projection network for monocular 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3111–3121 (2021)
Mostajabi, M., Maire, M., Shakhnarovich, G.: Regularizing deep networks by modeling and predicting label structure. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5629–5638 (2018)
Mousavian, A., Anguelov, D., Flynn, J., Kosecka, J.: 3D bounding box estimation using deep learning and geometry. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7074–7082 (2017)
Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: European Conference on Computer Vision, pp. 483–499 (2016)
Park, D., Ambrus, R., Guizilini, V., Li, J., Gaidon, A.: Is pseudo-lidar needed for monocular 3D object detection? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3142–3152 (2021)
Park, J., et al.: Time will tell: new outlooks and a baseline for temporal multi-view 3D object detection. In: International Conference on Learning Representations (2022)
Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3967–3976 (2019)
Philion, J., Fidler, S.: Lift, splat, shoot: encoding images from arbitrary camera rigs by implicitly unprojecting to 3D. In: European Conference on Computer Vision, pp. 194–210 (2020)
Qin, Z., Li, X.: Monoground: detecting monocular 3D objects from the ground. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3793–3802 (2022)
Reading, C., Harakeh, A., Chae, J., Waslander, S.L.: Categorical depth distribution network for monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8555–8564 (2021)
Roddick, T., Kendall, A., Cipolla, R.: Orthographic feature transform for monocular 3D object detection. In: The British Machine Vision Conference (2018)
Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)
Tian, Z., et al.: Adaptive perspective distillation for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 1372–1387 (2022)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (2017)
Wang, T., Xinge, Z., Pang, J., Lin, D.: Probabilistic and geometric depth: detecting objects in perspective. In: Conference on Robot Learning, pp. 1475–1485 (2022)
Wang, T., Zhu, X., Pang, J., Lin, D.: FCOS3D: fully convolutional one-stage monocular 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 913–922 (2021)
Wang, Y., Guizilini, V.C., Zhang, T., Wang, Y., Zhao, H., Solomon, J.: DETR3D: 3D object detection from multi-view images via 3D-to-2D queries. In: Conference on Robot Learning, pp. 180–191 (2022)
Wang, Y., Solomon, J.M.: Object DGCNN: 3D object detection using dynamic graphs. In: Advances in Neural Information Processing Systems, pp. 20745–20758 (2021)
Wang, Y., Zhou, W., Jiang, T., Bai, X., Xu, Y.: Intra-class feature variation distillation for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 346–362. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_21
Wang, Z., Li, D., Luo, C., Xie, C., Yang, X.: Distillbev: boosting multi-camera 3D object detection with cross-modal knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8637–8646 (2023)
Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)
Yang, C., et al.: Bevformer V2: adapting modern image backbones to bird’s-eye-view recognition via perspective supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17830–17839 (2023)
Yang, Z., et al.: Focal and global knowledge distillation for detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4643–4652 (2022)
Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3D object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11784–11793 (2021)
Yuan, L., Tay, F.E., Li, G., Wang, T., Feng, J.: Revisiting knowledge distillation via label smoothing regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3903–3911 (2020)
Zeng, J., et al.: Distilling focal knowledge from imperfect expert for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 992–1001 (2023)
Zhang, H., Yang, D., Yurtsever, E., Redmill, K.A., Özgüner, Ü.: Faraway-frustum: dealing with lidar sparsity for 3D object detection using fusion. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 2646–2652 (2021)
Zhang, L., Dong, R., Tai, H.S., Ma, K.: Pointdistiller: structured knowledge distillation towards efficient and compact 3D detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21791–21801 (2023)
Zhang, P., Kang, Z., Yang, T., Zhang, X., Zheng, N., Sun, J.: LGD: label-guided self-distillation for object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3309–3317 (2022)
Zhang, Y., et al.: QD-BEV: quantization-aware view-guided distillation for multi-view 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3825–3835 (2023)
Zhao, H., Zhang, Q., Zhao, S., Zhang, J., Tao, D.: Bevsimdet: simulated multi-modal distillation in bird’s-eye view for multi-view 3D object detection. arXiv preprint arXiv:2303.16818 (2023)
Zhou, S., Liu, W., Hu, C., Zhou, S., Ma, C.: Unidistill: a universal cross-modality knowledge distillation framework for 3D object detection in bird’s-eye view. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5116–5125 (2023)
Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)
Zhu, B., Jiang, Z., Zhou, X., Li, Z., Yu, G.: Class-balanced grouping and sampling for point cloud 3D object detection. arXiv preprint arXiv:1908.09492 (2019)
Acknowledgements
This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) and the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) under Grants 2021-0-01176 and 2022R1A2C200494413.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kim, S., Kim, Y., Hwang, S., Jeong, H., Kum, D. (2025). LabelDistill: Label-Guided Cross-Modal Knowledge Distillation for Camera-Based 3D Object Detection. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15114. Springer, Cham. https://doi.org/10.1007/978-3-031-72992-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-72992-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72991-1
Online ISBN: 978-3-031-72992-8
eBook Packages: Computer ScienceComputer Science (R0)