Nothing Special   »   [go: up one dir, main page]

Skip to main content

Semantic-Guided Robustness Tuning for Few-Shot Transfer Across Extreme Domain Shift

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

In this work, we focus on the cross-domain few-shot classification (CDFSC), which is mostly challenged by the low-data problem as well as extreme domain shift between base and novel target classes. Current methods always employ a lightweight backbone and continue to use a linear-probe-like traditional fine-tuning (Trad-FT) paradigm. While for recently emerging large-scale pre-trained model (LPM), which has more parameters with considerable prior knowledge, employing Trad-FT will face significant risks of overfitting and prior knowledge damage. In this paper, we propose semantic-guided robustness tuning (SRT), a novel fine-tuning paradigm including modulus-matching-based image-text mixup (MMIT-Mixup) and robustness-invariance fine-tuning (RI-FT), to address the CDFSC challenge of LPM. Concretely, SRT focuses on achieving robust class-specific representation. It first considers textual information as a robust and domain-invariant conductor, and MMIT-Mixup injects the domain-invariant and class-specific knowledge to obtain domain-invariant prototypes. Then, RI-FT optimizes the distance between features and prototypes to enhance the robustness of visual-encoder. We consider several types of LPMs and conduct extensive experiments, which reveals that SRT is a general solution for LPM’s CDFSC challenge and outperforms the existing methods with a large margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  2. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  3. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. arXiv preprint arXiv:1904.04232 (2019)

  4. Chen, W., Si, C., Zhang, Z., Wang, L., Wang, Z., Tan, T.: Semantic prompt for few-shot image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23581–23591 (2023)

    Google Scholar 

  5. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXiv:1902.03368 (2019)

  6. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  7. Das, R., Wang, Y.X., Moura, J.M.: On the importance of distractors for few-shot classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9030–9040 (2021)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  10. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  11. Fu, Y., Fu, Y., Jiang, Y.G.: Meta-fdmixup: cross-domain few-shot learning guided by labeled target data. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 5326–5334 (2021)

    Google Scholar 

  12. Fu, Y., Xie, Y., Fu, Y., Chen, J., Jiang, Y.G.: Wave-san: wavelet based style augmentation network for cross-domain few-shot learning. arXiv preprint arXiv:2203.07656 (2022)

  13. Fu, Y., Xie, Y., Fu, Y., Jiang, Y.-G.: StyleAdv: Meta Style Adversarial Training for Cross-Domain Few-Shot Learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24575–24584 (2023)

    Google Scholar 

  14. Gao, P., et al.: Clip-adapter: better vision-language models with feature adapters. Int. J. Comput. Vision 1–15 (2023)

    Google Scholar 

  15. Guo, Y., et al.: A broader study of cross-domain few-shot learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 124–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_8

    Chapter  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Helber, P., Bischke, B., Dengel, A., Borth, D.: Eurosat: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(7), 2217–2226 (2019)

    Article  Google Scholar 

  18. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.: Augmix: a simple data processing method to improve robustness and uncertainty. arXiv preprint arXiv:1912.02781 (2019)

  19. Hong, T., Guo, X., Ma, J.: Itmix: image-text mix augmentation for transferring clip to image classification. In: 2022 16th IEEE International Conference on Signal Processing (ICSP), vol. 1, pp. 129–133. IEEE (2022)

    Google Scholar 

  20. Hou, R., Chang, H., Ma, B., Shan, S., Chen, X.: Cross attention network for few-shot classification. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  21. Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: International Conference on Machine Learning, pp. 2790–2799. PMLR (2019)

    Google Scholar 

  22. Hu, E.J., et al.: Lora: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)

  23. Hu, Y., Ma, A.J.: Adversarial feature augmentation for cross-domain few-shot classification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13680, pp. 20–37. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20044-1_2

    Chapter  Google Scholar 

  24. Huang, Z., Zhou, A., Ling, Z., Cai, M., Wang, H., Lee, Y.J.: A sentence speaks a thousand images: domain generalization through distilling clip with language guidance. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11685–11695 (2023)

    Google Scholar 

  25. Jang, J., Kong, C., Jeon, D., Kim, S., Kwak, N.: Unifying vision-language representation space with single-tower transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 980–988 (2023)

    Google Scholar 

  26. Khattak, M.U., Rasheed, H., Maaz, M., Khan, S., Khan, F.S.: Maple: multi-modal prompt learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19113–19122 (2023)

    Google Scholar 

  27. Khattak, M.U., Wasim, S.T., Naseer, M., Khan, S., Yang, M.H., Khan, F.S.: Self-regulating prompts: foundational model adaptation without forgetting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15190–15200 (2023)

    Google Scholar 

  28. Kim, J.H., Choo, W., Song, H.O.: Puzzle mix: exploiting saliency and local statistics for optimal mixup. In: International Conference on Machine Learning, pp. 5275–5285. PMLR (2020)

    Google Scholar 

  29. Kurakin, A., et al.: Remixmatch: semi-supervised learning with distribution matching and augmentation anchoring (2020)

    Google Scholar 

  30. Li, J., Wang, Z., Gao, Y., Hu, X.: Exploring high-quality target domain information for unsupervised domain adaptive semantic segmentation. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 5237–5245 (2022)

    Google Scholar 

  31. Li, J., Wang, Z., Hu, X.: Learning intact features by erasing-inpainting for few-shot classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8401–8409 (2021)

    Google Scholar 

  32. Li, J., Zhang, Y., Wang, Z., Tu, K., Hou, S.: Probabilistic contrastive learning for domain adaptation. arXiv preprint arXiv:2111.06021 (2021)

  33. Liang, H., Zhang, Q., Dai, P., Lu, J.: Boosting the generalization capability in cross-domain few-shot learning via noise-enhanced supervised autoencoder. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9424–9434 (2021)

    Google Scholar 

  34. Liu, B., Zhao, Z., Li, Z., Jiang, J., Guo, Y., Ye, J.: Feature transformation ensemble model with batch spectral regularization for cross-domain few-shot classification. arXiv preprint arXiv:2005.08463 (2020)

  35. Liu, C., et al.: Learning a few-shot embedding model with contrastive learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8635–8643 (2021)

    Google Scholar 

  36. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  37. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1419 (2016)

    Article  Google Scholar 

  38. Oquab, M., et al.: Dinov2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

  39. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  40. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  41. Schuhmann, C., et al.: Laion-5b: an open large-scale dataset for training next generation image-text models. Adv. Neural. Inf. Process. Syst. 35, 25278–25294 (2022)

    Google Scholar 

  42. So, J., Oh, C., Shin, M., Song, K.: Multi-modal mixup for robust fine-tuning. arXiv preprint arXiv:2203.03897, vol. 3 (2022)

  43. Song, K., Ma, H., Zou, B., Zhang, H., Huang, W.: FD-align: feature discrimination alignment for fine-tuning pre-trained models in few-shot learning. arXiv preprint arXiv:2310.15105 (2023)

  44. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: International Conference on Machine Learning, pp. 6438–6447. PMLR (2019)

    Google Scholar 

  45. Wang, H., Deng, Z.H.: Cross-domain few-shot classification via adversarial task augmentation. arXiv preprint arXiv:2104.14385 (2021)

  46. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  47. Wang, Z., Liang, J., He, R., Xu, N., Wang, Z., Tan, T.: Improving zero-shot generalization for clip with synthesized prompts. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3032–3042 (2023)

    Google Scholar 

  48. Wang, Z., Liang, J., Sheng, L., He, R., Wang, Z., Tan, T.: A hard-to-beat baseline for training-free clip-based adaptation. arXiv preprint arXiv:2402.04087 (2024)

  49. Xu, M., Zhang, J., Ni, B., Li, T., Wang, C., Tian, Q., Zhang, W.: Adversarial domain adaptation with domain mixup. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6502–6509 (2020)

    Google Scholar 

  50. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  51. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  52. Zhang, R., et al.: Prompt, generate, then cache: cascade of foundation models makes strong few-shot learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15211–15222 (2023)

    Google Scholar 

  53. Zhang, R., et al.: Tip-adapter: training-free adaption of clip for few-shot classification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13695, pp. 493–510. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_29

    Chapter  Google Scholar 

  54. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Conditional prompt learning for vision-language models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16816–16825 (2022)

    Google Scholar 

  55. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. Int. J. Comput. Vision 130(9), 2337–2348 (2022)

    Article  Google Scholar 

  56. Zhuo, L., Fu, Y., Chen, J., Cao, Y., Jiang, Y.G.: TGDM: target guided dynamic mixup for cross-domain few-shot learning. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 6368–6376 (2022)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant 62176246. This work is also supported by Anhui Province Key Research and Development Plan (202304a05020045) and Anhui Province Natural Science Foundation (2208085UD17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilei Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4498 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, K., Wang, Z., Li, J. (2025). Semantic-Guided Robustness Tuning for Few-Shot Transfer Across Extreme Domain Shift. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15107. Springer, Cham. https://doi.org/10.1007/978-3-031-72967-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72967-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72966-9

  • Online ISBN: 978-3-031-72967-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics