Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive Correspondence Scoring for Unsupervised Medical Image Registration

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

We propose an adaptive training scheme for unsupervised medical image registration. Existing methods rely on image reconstruction as the primary supervision signal. However, nuisance variables (e.g. noise and covisibility), violation of the Lambertian assumption in physical waves (e.g. ultrasound), and inconsistent image acquisition can all cause a loss of correspondence between medical images. As the unsupervised learning scheme relies on intensity constancy between images to establish correspondence for reconstruction, this introduces spurious error residuals that are not modeled by the typical training objective. To mitigate this, we propose an adaptive framework that re-weights the error residuals with a correspondence scoring map during training, preventing the parametric displacement estimator from drifting away due to noisy gradients, which leads to performance degradation. To illustrate the versatility and effectiveness of our method, we tested our framework on three representative registration architectures across three medical image datasets along with other baselines. Our adaptive framework consistently outperforms other methods both quantitatively and qualitatively. Paired t-tests show that our improvements are statistically significant. Code available at: https://voldemort108x.github.io/AdaCS/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, S.S., et al.: Co-attention spatial transformer network for unsupervised motion tracking and cardiac strain analysis in 3D echocardiography. Med. Image Anal. 84, 102711 (2023)

    Article  Google Scholar 

  2. Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113 (2007)

    Article  Google Scholar 

  3. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  4. Bae, G., Budvytis, I., Cipolla, R.: Estimating and exploiting the aleatoric uncertainty in surface normal estimation. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13117–13126. IEEE, Montreal (2021)

    Google Scholar 

  5. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  6. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  7. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation (2021). arXiv:2102.04306 [cs]

  8. Chen, J., Frey, E.C., He, Y., Segars, W.P., Li, Y., Du, Y.: TransMorph: transformer for unsupervised medical image registration. Med. Image Anal. 82, 102615 (2022)

    Article  Google Scholar 

  9. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration, vol. 11070, pp. 729–738 (2018). arXiv:1805.04605 [cs]

  10. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Med. Image Anal. 57(1), 226–236 (2019)

    Article  Google Scholar 

  11. Davatzikos, C.: Spatial transformation and registration of brain images using elastically deformable models. Comput. Vision Image Underst. 66(2), 207–222 (1997)

    Article  Google Scholar 

  12. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale (2021). arXiv:2010.11929 [cs]

  13. Hill, D.L.G., Batchelor, P.G., Holden, M., Hawkes, D.J.: Medical image registration (2001)

    Google Scholar 

  14. Hoffmann, M., Billot, B., Greve, D.N., Iglesias, J.E., Fischl, B., Dalca, A.V.: SynthMorph: learning contrast-invariant registration without acquired images. IEEE Trans. Med. Imaging 41(3), 543–558 (2022). arXiv:2004.10282 [cs, eess, q-bio]

  15. Hong, B.W., Koo, J.K., Burger, M., Soatto, S.: Adaptive regularization of some inverse problems in image analysis (2017). arXiv:1705.03350 [cs]

  16. Hong, B.W., Koo, J.K., Dirks, H., Burger, M.: Adaptive regularization in convex composite optimization for variational imaging problems (2017). arXiv:1609.02356 [cs]

  17. Hoopes, A., Hoffmann, M., Fischl, B., Guttag, J., Dalca, A.V.: HyperMorph: amortized hyperparameter learning for image registration (2021). arXiv:2101.01035 [cs, eess]

  18. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110(3), 457–506 (2021)

    Article  MathSciNet  Google Scholar 

  19. Keelan, R., Shimada, K., Rabin, Y.: GPU-Based Simulation of Ultrasound Imaging Artifacts for Cryosurgery Training. Technol. Cancer Res. Treat. 16(1), 5–14 (2017)

    Article  Google Scholar 

  20. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? (2017). arXiv:1703.04977 [cs]

  21. Kim, B., Han, I., Ye, J.C.: DiffuseMorph: unsupervised deformable image registration using diffusion model. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, pp. 347–364. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_20

    Chapter  Google Scholar 

  22. Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)

    Article  Google Scholar 

  23. Leclerc, S., et al.: Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging 38(9), 2198–2210 (2019)

    Article  Google Scholar 

  24. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows, pp. 10012–10022 (2021)

    Google Scholar 

  25. Ma, T., Dai, X., Zhang, S., Wen, Y.: PIViT: large deformation image registration with pyramid-iterative vision transformer. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, pp. 602–612. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43999-5_57

    Chapter  Google Scholar 

  26. Mok, T.C.W., Chung, A.C.S.: Conditional deformable image registration with convolutional neural network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, pp. 35–45. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-43999-5_57

    Chapter  Google Scholar 

  27. Monteiro, M., et al.: Stochastic segmentation networks: modelling spatially correlated aleatoric uncertainty. In: Advances in Neural Information Processing Systems, vol. 33, pp. 12756–12767. Curran Associates, Inc. (2020)

    Google Scholar 

  28. Oliveira, F.P.M.: Medical image registration: a review (2014)

    Google Scholar 

  29. Qin, Y., Li, X.: FSDiffReg: feature-wise and score-wise diffusion-guided unsupervised deformable image registration for cardiac images (2023). arXiv:2307.12035 [cs]

  30. Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  31. Seitzer, M., Tavakoli, A., Antic, D., Martius, G.: On the pitfalls of heteroscedastic uncertainty estimation with probabilistic neural networks (2022). arXiv:2203.09168 [cs, stat]

  32. Shi, J., et al.: XMorpher: full transformer for deformable medical image registration via cross attention (2022). arXiv:2206.07349 [cs]

  33. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models (2022), arXiv:2010.02502 [cs]

  34. Ta, K., et al.: Multi-task learning for motion analysis and segmentation in 3D echocardiography. IEEE Trans. Med. Imaging (2024)

    Google Scholar 

  35. Wong, A., Fei, X., Hong, B.W., Soatto, S.: An adaptive framework for learning unsupervised depth completion. IEEE Robot. Autom. Lett. 6(2), 3120–3127 (2021)

    Article  Google Scholar 

  36. Wong, A., Soatto, S.: Bilateral cyclic constraint and adaptive regularization for unsupervised monocular depth prediction. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5637–5646. IEEE, Long Beach (2019)

    Google Scholar 

  37. Zhang, X., Dong, H., Gao, D., Zhao, X.: A comparative study for non-rigid image registration and rigid image registration. arXiv preprint arXiv:2001.03831 (2020)

  38. Zhang, X., Noga, M., Martin, D.G., Punithakumar, K.: Fully automated left atrium segmentation from anatomical cine long-axis MRI sequences using deep convolutional neural network with unscented Kalman filter. Med. Image Anal. 68, 101916 (2021)

    Article  Google Scholar 

  39. Zhang, X., et al.: Heteroscedastic uncertainty estimation for probabilistic unsupervised registration of noisy medical images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham (2024)

    Google Scholar 

  40. Zhang, X., You, C., Ahn, S., Zhuang, J., Staib, L., Duncan, J.: Learning Correspondences of cardiac motion from images using biomechanics-informed modeling. In: Camara, O., et al. (eds.) STACOM 2022. LNCS, vol. 13593, pp. 13–25. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23443-9_2

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by NIH/NHLBI grant R01HL121226.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoran Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2176 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Stendahl, J.C., Staib, L.H., Sinusas, A.J., Wong, A., Duncan, J.S. (2025). Adaptive Correspondence Scoring for Unsupervised Medical Image Registration. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15096. Springer, Cham. https://doi.org/10.1007/978-3-031-72920-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72920-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72919-5

  • Online ISBN: 978-3-031-72920-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics