Abstract
As asynchronous event data is more frequently engaged in various vision tasks, the risk of backdoor attacks becomes more evident. However, research into the potential risk associated with backdoor attacks in asynchronous event data has been scarce, leaving related tasks vulnerable to potential threats. This paper has uncovered the possibility of directly poisoning event data streams by proposing Event Trojan framework, including two kinds of triggers, i.e., immutable and mutable triggers. Specifically, our two types of event triggers are based on a sequence of simulated event spikes, which can be easily incorporated into any event stream to initiate backdoor attacks. Additionally, for the mutable trigger, we design an adaptive learning mechanism to maximize its aggressiveness. To improve the stealthiness, we introduce a novel loss function that constrains the generated contents of mutable triggers, minimizing the difference between triggers and original events while maintaining effectiveness. Extensive experiments on public event datasets show the effectiveness of the proposed backdoor triggers. We hope that this paper can draw greater attention to the potential threats posed by backdoor attacks on event-based tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alonso, I., Murillo, A.C.: EV-SegNet: semantic segmentation for event-based cameras. In: Proceedings CVPRW (2019)
Berlincioni, L., et al.: Neuromorphic event-based facial expression recognition. In: Proceedings CVPR (2023)
Chan, S.H., Dong, Y., Zhu, J., Zhang, X., Zhou, J.: BadDet: backdoor attacks on object detection. In: Proceedings ECCV (2022)
Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017)
Delbruck, T., Lang, M.: Robotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensor. Front. Neurosci. 7, 223 (2013)
Doan, K., Lao, Y., Zhao, W., Li, P.: LIRA: learnable, imperceptible and robust backdoor attacks. In: Proceedings ICCV (2021)
Dong, W., Liu, J., Ke, Y., Chen, L., Sun, W., Pan, X.: Steganography for neural radiance fields by backdooring. arXiv preprint arXiv:2309.10503 (2023)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021). https://openreview.net/forum?id=YicbFdNTTy
Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: Proceedings CVPRW (2004)
Feng, Y., Ma, B., Zhang, J., Zhao, S., Xia, Y., Tao, D.: FIBA: frequency-injection based backdoor attack in medical image analysis. In: Proceedings CVPR (2022)
Gallego, G., et al.: Event-based vision: a survey. IEEE TPAMI 44(1), 154–180 (2020)
Gehrig, D., Loquercio, A., Derpanis, K.G., Scaramuzza, D.: End-to-end learning of representations for asynchronous event-based data. In: Proceedings ICCV (2019)
Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: identifying vulnerabilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR (2016)
Huang, Z., Sun, L., Zhao, C., Li, S., Su, S.: EventPoint: self-supervised interest point detection and description for event-based camera. In: Proceedings WACV (January 2023)
Jiang, Z., Zhang, Y., Zou, D., Ren, J., Lv, J., Liu, Y.: Learning event-based motion deblurring. In: Proceedings CVPR (2020)
Kim, H., Leutenegger, S., Davison, A.J.: Real-time 3D reconstruction and 6-DoF tracking with an event camera. In: Proceedings ECCV (2016)
Kim, J., Hwang, I., Kim, Y.M.: Ev-TTA: test-time adaptation for event-based object recognition. In: Proceedings CVPR (2022)
Koffas, S., Xu, J., Conti, M., Picek, S.: Can you hear it? backdoor attacks via ultrasonic triggers. In: Proceedings ACM Workshop WiseML, pp. 57–62 (2022)
Lagorce, X., Orchard, G., Galluppi, F., Shi, B.E., Benosman, R.B.: HOTS: a hierarchy of event-based time-surfaces for pattern recognition. IEEE TPAMI 39(7), 1346–1359 (2016)
Li, X., et al.: PointBA: towards backdoor attacks in 3D point cloud. In: Proceedings ICCV (2021)
Li, Y., Jiang, Y., Li, Z., Xia, S.T.: Backdoor learning: a survey. TNNLS 1–18 (2022). https://doi.org/10.1109/TNNLS.2022.3182979
Li, Y., Li, Y., Wu, B., Li, L., He, R., Lyu, S.: Invisible backdoor attack with sample-specific triggers. In: Proceedings ICCV, pp. 16463–16472 (2021)
Litzenberger, M., et al.: Estimation of vehicle speed based on asynchronous data from a silicon retina optical sensor. In: 2006 IEEE intelligent transportation systems conference, pp. 653–658. IEEE (2006)
Liu, M., Delbruck, T.: Adaptive time-slice block-matching optical flow algorithm for dynamic vision sensors. In: Proceedings BMVC (2018)
Liu, Y., Ma, X., Bailey, J., Lu, F.: Reflection backdoor: a natural backdoor attack on deep neural networks. In: Proceedings ECCV (2020)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings ICCV (2021)
Maqueda, A.I., Loquercio, A., Gallego, G., García, N., Scaramuzza, D.: Event-based vision meets deep learning on steering prediction for self-driving cars. In: Proceedings CVPR, pp. 5419–5427 (2018)
Nguyen, T.A., Tran, A.T.: WaNet - imperceptible warping-based backdoor attack. In: ICLR (2021). https://openreview.net/forum?id=eEn8KTtJOx
Orchard, G., Jayawant, A., Cohen, G.K., Thakor, N.: Converting static image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9, 437 (2015)
Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N., Benosman, R.: HFirst: a temporal approach to object recognition. IEEE TPAMI 37(10), 2028–2040 (2015)
Pan, Z., Mishra, P.: Backdoor attacks on bayesian neural networks using reverse distribution. arXiv preprint arXiv:2205.09167 (2022)
Perot, E., De Tournemire, P., Nitti, D., Masci, J., Sironi, A.: Learning to detect objects with a 1 megapixel event camera. NeurIPS (2020)
Posch, C., Matolin, D., Wohlgenannt, R.: A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J. Solid-State Circuits 46(1), 259–275 (2010)
Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: Events-to-video: bringing modern computer vision to event cameras. In: Proceedings CVPR (2019)
Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: High speed and high dynamic range video with an event camera. IEEE TPAMI 43(6), 1964–1980 (2019)
Schaefer, S., Gehrig, D., Scaramuzza, D.: AEGNN: asynchronous event-based graph neural networks. In: Proceedings CVPR (2022)
Sheng, X., Han, Z., Li, P., Chang, X.: A survey on backdoor attack and defense in natural language processing. In: QRS (2022)
Shiba, S., Aoki, Y., Gallego, G.: Secrets of event-based optical flow. In: Proceedings ECCV (2022)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: HATS: histograms of averaged time surfaces for robust event-based object classification. In: Proceedings CVPR (2018)
Stoffregen, T., Gallego, G., Drummond, T., Kleeman, L., Scaramuzza, D.: Event-based motion segmentation by motion compensation. In: Proceedings ICCV (2019)
Sun, Z., Messikommer, N., Gehrig, D., Scaramuzza, D.: ESS: Learning event-based semantic segmentation from still images. In: Proceedings ECCV. Springer (2022). https://doi.org/10.1007/978-3-031-19830-4_20
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings CVPR (2016)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: ICML (2019)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: ICML (2021)
Wenger, E., Passananti, J., Bhagoji, A.N., Yao, Y., Zheng, H., Zhao, B.Y.: Backdoor attacks against deep learning systems in the physical world. In: Proceedings CVPR (2021)
Yu, Y., Wang, Y., Yang, W., Lu, S., Tan, Y.P., Kot, A.C.: Backdoor attacks against deep image compression via adaptive frequency trigger. In: Proceedings CVPR (2023)
Zhang, J., et al.: Poison ink: robust and invisible backdoor attack. IEEE TIP 31, 5691–5705 (2022)
Zhang, K., et al.: Discrete time convolution for fast event-based stereo. In: Proceedings CVPR (2022)
Zhao, S., Ma, X., Zheng, X., Bailey, J., Chen, J., Jiang, Y.G.: Clean-label backdoor attacks on video recognition models. In: Proceedings CVPR (2020)
Zhou, C., Teng, M., Han, J., Xu, C., Shi, B.: DeLiEve-Net: deblurring low-light images with light streaks and local events. In: Proceedings ICCV (2021)
Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning of optical flow, depth, and egomotion. In: Proceedings CVPR (2019)
Zhu, M., Wei, S., Zha, H., Wu, B.: Neural polarizer: a lightweight and effective backdoor defense via purifying poisoned features. Adv. Neural Inf. Process. Syst. 36 (2024)
Zubić, N., Gehrig, D., Gehrig, M., Scaramuzza, D.: From chaos comes order: Ordering event representations for object recognition and detection. In: Proceedings ICCV (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, R., Guo, Q., Li, H., Wan, R. (2025). Event Trojan: Asynchronous Event-Based Backdoor Attacks. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15065. Springer, Cham. https://doi.org/10.1007/978-3-031-72667-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-72667-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72666-8
Online ISBN: 978-3-031-72667-5
eBook Packages: Computer ScienceComputer Science (R0)