Nothing Special   »   [go: up one dir, main page]

Skip to main content

Event Trojan: Asynchronous Event-Based Backdoor Attacks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

As asynchronous event data is more frequently engaged in various vision tasks, the risk of backdoor attacks becomes more evident. However, research into the potential risk associated with backdoor attacks in asynchronous event data has been scarce, leaving related tasks vulnerable to potential threats. This paper has uncovered the possibility of directly poisoning event data streams by proposing Event Trojan framework, including two kinds of triggers, i.e., immutable and mutable triggers. Specifically, our two types of event triggers are based on a sequence of simulated event spikes, which can be easily incorporated into any event stream to initiate backdoor attacks. Additionally, for the mutable trigger, we design an adaptive learning mechanism to maximize its aggressiveness. To improve the stealthiness, we introduce a novel loss function that constrains the generated contents of mutable triggers, minimizing the difference between triggers and original events while maintaining effectiveness. Extensive experiments on public event datasets show the effectiveness of the proposed backdoor triggers. We hope that this paper can draw greater attention to the potential threats posed by backdoor attacks on event-based tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso, I., Murillo, A.C.: EV-SegNet: semantic segmentation for event-based cameras. In: Proceedings CVPRW (2019)

    Google Scholar 

  2. Berlincioni, L., et al.: Neuromorphic event-based facial expression recognition. In: Proceedings CVPR (2023)

    Google Scholar 

  3. Chan, S.H., Dong, Y., Zhu, J., Zhang, X., Zhou, J.: BadDet: backdoor attacks on object detection. In: Proceedings ECCV (2022)

    Google Scholar 

  4. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017)

  5. Delbruck, T., Lang, M.: Robotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensor. Front. Neurosci. 7, 223 (2013)

    Article  Google Scholar 

  6. Doan, K., Lao, Y., Zhao, W., Li, P.: LIRA: learnable, imperceptible and robust backdoor attacks. In: Proceedings ICCV (2021)

    Google Scholar 

  7. Dong, W., Liu, J., Ke, Y., Chen, L., Sun, W., Pan, X.: Steganography for neural radiance fields by backdooring. arXiv preprint arXiv:2309.10503 (2023)

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021). https://openreview.net/forum?id=YicbFdNTTy

  9. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: Proceedings CVPRW (2004)

    Google Scholar 

  10. Feng, Y., Ma, B., Zhang, J., Zhao, S., Xia, Y., Tao, D.: FIBA: frequency-injection based backdoor attack in medical image analysis. In: Proceedings CVPR (2022)

    Google Scholar 

  11. Gallego, G., et al.: Event-based vision: a survey. IEEE TPAMI 44(1), 154–180 (2020)

    Article  Google Scholar 

  12. Gehrig, D., Loquercio, A., Derpanis, K.G., Scaramuzza, D.: End-to-end learning of representations for asynchronous event-based data. In: Proceedings ICCV (2019)

    Google Scholar 

  13. Gu, T., Dolan-Gavitt, B., Garg, S.: BadNets: identifying vulnerabilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733 (2017)

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR (2016)

    Google Scholar 

  15. Huang, Z., Sun, L., Zhao, C., Li, S., Su, S.: EventPoint: self-supervised interest point detection and description for event-based camera. In: Proceedings WACV (January 2023)

    Google Scholar 

  16. Jiang, Z., Zhang, Y., Zou, D., Ren, J., Lv, J., Liu, Y.: Learning event-based motion deblurring. In: Proceedings CVPR (2020)

    Google Scholar 

  17. Kim, H., Leutenegger, S., Davison, A.J.: Real-time 3D reconstruction and 6-DoF tracking with an event camera. In: Proceedings ECCV (2016)

    Google Scholar 

  18. Kim, J., Hwang, I., Kim, Y.M.: Ev-TTA: test-time adaptation for event-based object recognition. In: Proceedings CVPR (2022)

    Google Scholar 

  19. Koffas, S., Xu, J., Conti, M., Picek, S.: Can you hear it? backdoor attacks via ultrasonic triggers. In: Proceedings ACM Workshop WiseML, pp. 57–62 (2022)

    Google Scholar 

  20. Lagorce, X., Orchard, G., Galluppi, F., Shi, B.E., Benosman, R.B.: HOTS: a hierarchy of event-based time-surfaces for pattern recognition. IEEE TPAMI 39(7), 1346–1359 (2016)

    Article  Google Scholar 

  21. Li, X., et al.: PointBA: towards backdoor attacks in 3D point cloud. In: Proceedings ICCV (2021)

    Google Scholar 

  22. Li, Y., Jiang, Y., Li, Z., Xia, S.T.: Backdoor learning: a survey. TNNLS 1–18 (2022). https://doi.org/10.1109/TNNLS.2022.3182979

  23. Li, Y., Li, Y., Wu, B., Li, L., He, R., Lyu, S.: Invisible backdoor attack with sample-specific triggers. In: Proceedings ICCV, pp. 16463–16472 (2021)

    Google Scholar 

  24. Litzenberger, M., et al.: Estimation of vehicle speed based on asynchronous data from a silicon retina optical sensor. In: 2006 IEEE intelligent transportation systems conference, pp. 653–658. IEEE (2006)

    Google Scholar 

  25. Liu, M., Delbruck, T.: Adaptive time-slice block-matching optical flow algorithm for dynamic vision sensors. In: Proceedings BMVC (2018)

    Google Scholar 

  26. Liu, Y., Ma, X., Bailey, J., Lu, F.: Reflection backdoor: a natural backdoor attack on deep neural networks. In: Proceedings ECCV (2020)

    Google Scholar 

  27. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings ICCV (2021)

    Google Scholar 

  28. Maqueda, A.I., Loquercio, A., Gallego, G., García, N., Scaramuzza, D.: Event-based vision meets deep learning on steering prediction for self-driving cars. In: Proceedings CVPR, pp. 5419–5427 (2018)

    Google Scholar 

  29. Nguyen, T.A., Tran, A.T.: WaNet - imperceptible warping-based backdoor attack. In: ICLR (2021). https://openreview.net/forum?id=eEn8KTtJOx

  30. Orchard, G., Jayawant, A., Cohen, G.K., Thakor, N.: Converting static image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9, 437 (2015)

    Article  Google Scholar 

  31. Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N., Benosman, R.: HFirst: a temporal approach to object recognition. IEEE TPAMI 37(10), 2028–2040 (2015)

    Article  Google Scholar 

  32. Pan, Z., Mishra, P.: Backdoor attacks on bayesian neural networks using reverse distribution. arXiv preprint arXiv:2205.09167 (2022)

  33. Perot, E., De Tournemire, P., Nitti, D., Masci, J., Sironi, A.: Learning to detect objects with a 1 megapixel event camera. NeurIPS (2020)

    Google Scholar 

  34. Posch, C., Matolin, D., Wohlgenannt, R.: A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J. Solid-State Circuits 46(1), 259–275 (2010)

    Article  Google Scholar 

  35. Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: Events-to-video: bringing modern computer vision to event cameras. In: Proceedings CVPR (2019)

    Google Scholar 

  36. Rebecq, H., Ranftl, R., Koltun, V., Scaramuzza, D.: High speed and high dynamic range video with an event camera. IEEE TPAMI 43(6), 1964–1980 (2019)

    Article  Google Scholar 

  37. Schaefer, S., Gehrig, D., Scaramuzza, D.: AEGNN: asynchronous event-based graph neural networks. In: Proceedings CVPR (2022)

    Google Scholar 

  38. Sheng, X., Han, Z., Li, P., Chang, X.: A survey on backdoor attack and defense in natural language processing. In: QRS (2022)

    Google Scholar 

  39. Shiba, S., Aoki, Y., Gallego, G.: Secrets of event-based optical flow. In: Proceedings ECCV (2022)

    Google Scholar 

  40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  41. Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: HATS: histograms of averaged time surfaces for robust event-based object classification. In: Proceedings CVPR (2018)

    Google Scholar 

  42. Stoffregen, T., Gallego, G., Drummond, T., Kleeman, L., Scaramuzza, D.: Event-based motion segmentation by motion compensation. In: Proceedings ICCV (2019)

    Google Scholar 

  43. Sun, Z., Messikommer, N., Gehrig, D., Scaramuzza, D.: ESS: Learning event-based semantic segmentation from still images. In: Proceedings ECCV. Springer (2022). https://doi.org/10.1007/978-3-031-19830-4_20

  44. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings CVPR (2016)

    Google Scholar 

  45. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: ICML (2019)

    Google Scholar 

  46. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: ICML (2021)

    Google Scholar 

  47. Wenger, E., Passananti, J., Bhagoji, A.N., Yao, Y., Zheng, H., Zhao, B.Y.: Backdoor attacks against deep learning systems in the physical world. In: Proceedings CVPR (2021)

    Google Scholar 

  48. Yu, Y., Wang, Y., Yang, W., Lu, S., Tan, Y.P., Kot, A.C.: Backdoor attacks against deep image compression via adaptive frequency trigger. In: Proceedings CVPR (2023)

    Google Scholar 

  49. Zhang, J., et al.: Poison ink: robust and invisible backdoor attack. IEEE TIP 31, 5691–5705 (2022)

    Google Scholar 

  50. Zhang, K., et al.: Discrete time convolution for fast event-based stereo. In: Proceedings CVPR (2022)

    Google Scholar 

  51. Zhao, S., Ma, X., Zheng, X., Bailey, J., Chen, J., Jiang, Y.G.: Clean-label backdoor attacks on video recognition models. In: Proceedings CVPR (2020)

    Google Scholar 

  52. Zhou, C., Teng, M., Han, J., Xu, C., Shi, B.: DeLiEve-Net: deblurring low-light images with light streaks and local events. In: Proceedings ICCV (2021)

    Google Scholar 

  53. Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning of optical flow, depth, and egomotion. In: Proceedings CVPR (2019)

    Google Scholar 

  54. Zhu, M., Wei, S., Zha, H., Wu, B.: Neural polarizer: a lightweight and effective backdoor defense via purifying poisoned features. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  55. Zubić, N., Gehrig, D., Gehrig, M., Scaramuzza, D.: From chaos comes order: Ordering event representations for object recognition and detection. In: Proceedings ICCV (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjie Wan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18059 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, R., Guo, Q., Li, H., Wan, R. (2025). Event Trojan: Asynchronous Event-Based Backdoor Attacks. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15065. Springer, Cham. https://doi.org/10.1007/978-3-031-72667-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72667-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72666-8

  • Online ISBN: 978-3-031-72667-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics