Nothing Special   »   [go: up one dir, main page]

Skip to main content

Invertible Neural Warp for NeRF

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15075))

Included in the following conference series:

  • 87 Accesses

Abstract

This paper tackles the simultaneous optimization of pose and Neural Radiance Fields (NeRF). Departing from the conventional practice of using explicit global representations for camera pose, we propose a novel overparameterized representation that models camera poses as learnable rigid warp functions. We establish that modeling the rigid warps must be tightly coupled with constraints and regularization imposed. Specifically, we highlight the critical importance of enforcing invertibility when learning rigid warp functions via neural network and propose the use of an Invertible Neural Network (INN) coupled with a geometry-informed constraint for this purpose. We present results on synthetic and real-world datasets, and demonstrate that our approach outperforms existing baselines in terms of pose estimation and high-fidelity reconstruction due to enhanced optimization convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our use of invertibility strictly adheres to the well-established mathematical definition. Let f be a function whose domain is \(\mathcal {X}\) and codomain is \(\mathcal {Y}\). f is invertible iff there exists a function g from \(\mathcal {Y}\) to \(\mathcal {X}\) such that \(g(f(x))=x\) \(\,\forall x \in \mathcal {X}\) and \(f(g(y))=y\) \(\,\forall y \in \mathcal {Y}\) [14]. We use bijective and invertible interchangeably throughout our paper.

  2. 2.

    This can be succinctly written as \(\textbf{r}^{(C)}(z) = z_{i,u} \textbf{d}\) as \(\textbf{o}^{(C)}\) is \([0,0,0]^{T}\) in camera coordinate space.

  3. 3.

    https://github.com/kornia/kornia.

  4. 4.

    https://github.com/naver/roma.

  5. 5.

    For our proposed method, we evaluate the estimated global poses Eq. (5).

References

  1. Allen-Zhu, Z., Li, Y., Liang, Y.: Learning and generalization in overparameterized neural networks, going beyond two layers. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  2. Arora, S., Du, S., Hu, W., Li, Z., Wang, R.: Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. In: International Conference on Machine Learning, pp. 322–332. PMLR (2019)

    Google Scholar 

  3. Behrmann, J., Grathwohl, W., Chen, R.T., Duvenaud, D., Jacobsen, J.H.: Invertible residual networks. In: International Conference on Machine Learning, pp. 573–582. PMLR (2019)

    Google Scholar 

  4. Bian, J.W., Bian, W., Prisacariu, V.A., Torr, P.: PoRF: pose residual field for accurate neural surface reconstruction. arXiv preprint arXiv:2310.07449 (2023)

  5. Bian, W., Wang, Z., Li, K., Bian, J.W., Prisacariu, V.A.: NoPe-NeRF: optimising neural radiance field with no pose prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4160–4169 (2023)

    Google Scholar 

  6. Cai, H., Feng, W., Feng, X., Wang, Y., Zhang, J.: Neural surface reconstruction of dynamic scenes with monocular RGB-D camera. In: Advances in Neural Information Processing Systems, vol. 35, pp. 967–981 (2022)

    Google Scholar 

  7. Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  8. Chen, Y., Lee, G.H.: DBARF: deep bundle-adjusting generalizable neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24–34 (2023)

    Google Scholar 

  9. Chen, Y., et al.: Local-to-global registration for bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8264–8273 (2023)

    Google Scholar 

  10. Chng, S.F., Ramasinghe, S., Sherrah, J., Lucey, S.: Gaussian activated neural radiance fields for high fidelity reconstruction and pose estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision, pp. 264–280. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_16

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  12. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. arXiv preprint arXiv:1605.08803 (2016)

  13. Guo, M., Fathi, A., Wu, J., Funkhouser, T.: Object-centric neural scene rendering. arXiv preprint arXiv:2012.08503 (2020)

  14. Jeffreys, H., Jeffreys, B.: Methods of Mathematical Physics. Cambridge University Press (1999)

    Google Scholar 

  15. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413. IEEE (2014)

    Google Scholar 

  16. Jeong, Y., Ahn, S., Choy, C., Anandkumar, A., Cho, M., Park, J.: Self-calibrating neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5846–5854 (2021)

    Google Scholar 

  17. Jiang, C., Huang, J., Tagliasacchi, A., Guibas, L.J.: ShapeFlow: learnable deformation flows among 3D shapes. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9745–9757 (2020)

    Google Scholar 

  18. Kerr, J., Kim, C.M., Goldberg, K., Kanazawa, A., Tancik, M.: LERF: language embedded radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19729–19739 (2023)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Lei, J., Daniilidis, K.: Cadex: learning canonical deformation coordinate space for dynamic surface representation via neural homeomorphism. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6624–6634 (2022)

    Google Scholar 

  21. Levoy, M.: Efficient ray tracing of volume data. ACM Trans. Graph. (TOG) 9(3), 245–261 (1990)

    Article  Google Scholar 

  22. Li, Y., Liang, Y.: Learning overparameterized neural networks via stochastic gradient descent on structured data. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  23. Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5741–5751 (2021)

    Google Scholar 

  24. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)

    Article  Google Scholar 

  25. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  26. Neyshabur, B., Tomioka, R., Srebro, N.: Norm-based capacity control in neural networks. In: Conference on Learning Theory, pp. 1376–1401. PMLR (2015)

    Google Scholar 

  27. Nguyen, Q.N., Mondelli, M.: Global convergence of deep networks with one wide layer followed by pyramidal topology. In: Advances in Neural Information Processing Systems, vol. 33, pp. 11961–11972 (2020)

    Google Scholar 

  28. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4D reconstruction by learning particle dynamics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5379–5389 (2019)

    Google Scholar 

  29. Oymak, S., Soltanolkotabi, M.: Toward moderate overparameterization: global convergence guarantees for training shallow neural networks. IEEE J. Sel. Areas Inf. Theory 1(1), 84–105 (2020)

    Article  Google Scholar 

  30. Park, K., Henzler, P., Mildenhall, B., Barron, J.T., Martin-Brualla, R.: Camp: camera preconditioning for neural radiance fields. ACM Trans. Graph. (TOG) 42(6), 1–11 (2023)

    Article  Google Scholar 

  31. Park, K., et al.: Nerfies: deformable neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874 (2021)

    Google Scholar 

  32. Parra, A., Chng, S.F., Chin, T.J., Eriksson, A., Reid, I.: Rotation coordinate descent for fast globally optimal rotation averaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4298–4307 (2021)

    Google Scholar 

  33. Paschalidou, D., Katharopoulos, A., Geiger, A., Fidler, S.: Neural parts: learning expressive 3D shape abstractions with invertible neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3204–3215 (2021)

    Google Scholar 

  34. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  35. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  Google Scholar 

  36. Tancik, M., et al.: Nerfstudio: a modular framework for neural radiance field development. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–12 (2023)

    Google Scholar 

  37. Truong, P., Rakotosaona, M.J., Manhardt, F., Tombari, F.: SPARF: neural radiance fields from sparse and noisy poses. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4190–4200 (2023)

    Google Scholar 

  38. Wang, C., MacDonald, L.E., Jeni, L.A., Lucey, S.: Flow supervision for deformable NeRF. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21128–21137 (2023)

    Google Scholar 

  39. Wang, Q., et al.: Tracking everything everywhere all at once. arXiv preprint arXiv:2306.05422 (2023)

  40. Wang, Z., Wu, S., Xie, W., Chen, M., Prisacariu, V.A.: NeRF–: neural radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064 (2021)

  41. Wu, T., et al.: Voxurf: voxel-based efficient and accurate neural surface reconstruction. arXiv preprint arXiv:2208.12697 (2022)

  42. Xia, Y., Tang, H., Timofte, R., Van Gool, L.: SiNeRF: sinusoidal neural radiance fields for joint pose estimation and scene reconstruction. arXiv preprint arXiv:2210.04553 (2022)

  43. Xu, C., et al.: NeRF-Det: learning geometry-aware volumetric representation for multi-view 3D object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 23320–23330 (2023)

    Google Scholar 

  44. Xu, Q., et al.: Point-NeRF: point-based neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5438–5448 (2022)

    Google Scholar 

  45. Yang, G., Belongie, S., Hariharan, B., Koltun, V.: Geometry processing with neural fields. In: Advances in Neural Information Processing Systems, vol. 34, pp. 22483–22497 (2021)

    Google Scholar 

  46. Zhan, H., Zheng, J., Xu, Y., Reid, I., Rezatofighi, H.: ActiveRMAP: radiance field for active mapping and planning. arXiv preprint arXiv:2211.12656 (2022)

  47. Zhao, F., et al.: HumanNeRF: efficiently generated human radiance field from sparse inputs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7743–7753 (2022)

    Google Scholar 

  48. Zhu, Z., et al.: Nice-slam: neural implicit scalable encoding for slam. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12786–12796 (2022)

    Google Scholar 

Download references

Acknowledgement

We thank Chee-Kheng (CK) Chng for insightful discussions and technical feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Fang Chng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 43317 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chng, SF., Garg, R., Saratchandran, H., Lucey, S. (2025). Invertible Neural Warp for NeRF. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15075. Springer, Cham. https://doi.org/10.1007/978-3-031-72643-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72643-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72642-2

  • Online ISBN: 978-3-031-72643-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics