Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rethinking Image Super-Resolution from Training Data Perspectives

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

In this work, we investigate the understudied effect of the training data used for image super-resolution (SR). Most commonly, novel SR methods are developed and benchmarked on common training datasets such as DIV2K and DF2K. However, we investigate and rethink the training data from the perspectives of diversity and quality, thereby addressing the question of “How important is SR training for SR models?”. To this end, we propose an automated image evaluation pipeline. With this, we stratify existing high-resolution image datasets and larger-scale image datasets such as ImageNet and PASS to compare their performances. We find that datasets with (i) low compression artifacts, (ii) high within-image diversity as judged by the number of different objects, and (iii) a large number of images from ImageNet or PASS all positively affect SR performance. We hope that the proposed simple-yet-effective dataset curation pipeline will inform the construction of SR datasets in the future and yield overall better models. Code is available at: https://github.com/gohtanii/DiverSeg-dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We define images with a resolution lower than HD as low-resolution images.

References

  1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: CVPRW (2017)

    Google Scholar 

  2. Asano, Y.M., Rupprecht, C., Zisserman, A., Vedaldi, A.: Pass: an imagenet replacement for self-supervised pretraining without humans. In: NeurIPS Track on Datasets and Benchmarks (2021)

    Google Scholar 

  3. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)

    Google Scholar 

  4. Bhardwaj, D., Pankajakshan, V.: A jpeg blocking artifact detector for image forensics. Sig. Process. Image Commun. 68, 155–161 (2018)

    Article  Google Scholar 

  5. Chen, H., et al.: Pre-trained image processing transformer. In: CVPR (2021)

    Google Scholar 

  6. Chen, X., Wang, X., Zhou, J., Qiao, Y., Dong, C.: Activating more pixels in image super-resolution transformer. In: CVPR (2023)

    Google Scholar 

  7. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: CVPR (2019)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  9. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  10. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  11. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015)

    Google Scholar 

  12. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)

    Google Scholar 

  13. Kirillov, A., et al.: Segment anything. In: ICCV (2023)

    Google Scholar 

  14. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)

    Google Scholar 

  15. Li, A., Zhang, L., Liu, Y., Zhu, C.: Feature modulation transformer: cross-refinement of global representation via high-frequency prior for image super-resolution. In: CVPR (2023)

    Google Scholar 

  16. Li, W., Lu, X., Qian, S., Lu, J., Zhang, X., Jia, J.: On efficient transformer-based image pre-training for low-level vision. arXiv preprint arXiv:2112.10175 (2021)

  17. Li, Y., et al.: LSDIR: a large scale dataset for image restoration. In: CVPRW (2023)

    Google Scholar 

  18. Li, Y., et al.: Ntire 2023 challenge on efficient super-resolution: methods and results. In: CVPRW (2023)

    Google Scholar 

  19. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwiNIR: image restoration using swin transformer. In: ICCVW (2021)

    Google Scholar 

  20. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPRW (2017)

    Google Scholar 

  21. Lin, Z., et al.: Revisiting RCAN: improved training for image super-resolution. arXiv preprint arXiv:2201.11279 (2022)

  22. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)

    Google Scholar 

  23. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimedia Tools Appl. 76, 21811–21838 (2017)

    Article  Google Scholar 

  24. Mei, Y., Fan, Y., Zhou, Y.: Image super-resolution with non-local sparse attention. In: CVPR (2021)

    Google Scholar 

  25. Niu, B., et al.: Single image super-resolution via a holistic attention network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 191–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_12

    Chapter  Google Scholar 

  26. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR (2016)

    Google Scholar 

  27. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: Ntire 2017 challenge on single image super-resolution: methods and results. In: CVPRW (2017)

    Google Scholar 

  28. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: ICCV (2017)

    Google Scholar 

  29. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: ECCVW (2018)

    Google Scholar 

  30. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: CVPR (2008)

    Google Scholar 

  31. Yang, Q., et al.: HQ-50k: a large-scale, high-quality dataset for image restoration. arXiv preprint arXiv:2306.05390 (2023)

  32. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  33. Zhang, D., Huang, F., Liu, S., Wang, X., Jin, Z.: SwinFIR: revisiting the swinIR with fast Fourier convolution and improved training for image super-resolution. arXiv preprint arXiv:2208.11247 (2022)

  34. Zhang, X., Zeng, H., Guo, S., Zhang, L.: Efficient long-range attention network for image super-resolution. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13677, pp. 649–667. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_39

    Chapter  Google Scholar 

  35. Zhang, Y., Li, K., Zhong, B., Fu, Y.: Residual non-local attention networks for image restoration. In: ICLR (2019)

    Google Scholar 

  36. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  37. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR (2018)

    Google Scholar 

  38. Zhang, Y., et al.: Ntire 2023 challenge on image super-resolution (x4): methods and results. In: CVPRW (2023)

    Google Scholar 

  39. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  40. Zhou, S., Zhang, J., Zuo, W., Loy, C.C.: Cross-scale internal graph neural network for image super-resolution. In: Advances in Neural Information Processing Systems, vol. 33, pp. 3499–3509 (2020)

    Google Scholar 

  41. Zhou, X., Girdhar, R., Joulin, A., Krähenbühl, P., Misra, I.: Detecting twenty-thousand classes using image-level supervision. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13669, pp. 350–368. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20077-9_21

    Chapter  Google Scholar 

  42. Zhou, Y., Li, Z., Guo, C.L., Bai, S., Cheng, M.M., Hou, Q.: SRFormer: permuted self-attention for single image super-resolution. In: ICCV (2023)

    Google Scholar 

Download references

Acknowledgements

Computational resource of AI Bridging Cloud Infrastructure (ABCI) provided by National Institute of Advanced Industrial Science and Technology (AIST) was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Go Ohtani .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 427 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ohtani, G. et al. (2025). Rethinking Image Super-Resolution from Training Data Perspectives. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15075. Springer, Cham. https://doi.org/10.1007/978-3-031-72643-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72643-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72642-2

  • Online ISBN: 978-3-031-72643-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics