Nothing Special   »   [go: up one dir, main page]

Skip to main content

SA-DVAE: Improving Zero-Shot Skeleton-Based Action Recognition by Disentangled Variational Autoencoders

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Existing zero-shot skeleton-based action recognition methods utilize projection networks to learn a shared latent space of skeleton features and semantic embeddings. The inherent imbalance in action recognition datasets, characterized by variable skeleton sequences yet constant class labels, presents significant challenges for alignment. To address the imbalance, we propose SA-DVAE—Semantic Alignment via Disentangled Variational Autoencoders, a method that first adopts feature disentanglement to separate skeleton features into two independent parts—one is semantic-related and another is irrelevant—to better align skeleton and semantic features. We implement this idea via a pair of modality-specific variational autoencoders coupled with a total correction penalty. We conduct experiments on three benchmark datasets: NTU RGB+D, NTU RGB+D 120 and PKU-MMD, and our experimental results show that SA-DAVE produces improved performance over existing methods. The code is available at https://github.com/pha123661/SA-DVAE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Official website: https://rose1.ntu.edu.sg/dataset/actionRecognition/.

  2. 2.

    GitHub link: https://github.com/shahroudy/NTURGB-D.

References

  1. Atzmon, Y., Chechik, G.: Adaptive confidence smoothing for generalized zero-shot learning. In: CVPR (2019)

    Google Scholar 

  2. Bengio, Y.: Deep learning of representations: looking forward. In: Dediu, A.-H., Martín-Vide, C., Mitkov, R., Truthe, B. (eds.) Statistical Language and Speech Processing, pp. 1–37. Springer Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39593-2_1

    Chapter  Google Scholar 

  3. Chen, Z., et al.: Semantics disentangling for generalized zero-shot learning. In: ICCV (2021)

    Google Scholar 

  4. Cheng, K., Zhang, Y., He, X., Chen, W., Cheng, J., Lu, H.: Skeleton-based action recognition with shift graph convolutional network. In: CVPR (2020)

    Google Scholar 

  5. Chunhui, L., Yueyu, H., Yanghao, L., Sijie, S., Jiaying, L.: PKU-MMD: a large scale benchmark for continuous multi-modal human action understanding. arXiv preprint arXiv:1703.07475 (2017)

  6. Fu, H., Li, C., Liu, X., Gao, J., Celikyilmaz, A., Carin, L.: Cyclical annealing schedule: a simple approach to mitigating KL vanishing. arXiv preprint arXiv:1903.10145 (2019)

  7. Gupta, P., Sharma, D., Sarvadevabhatla, R.K.: Syntactically guided generative embeddings for zero-shot skeleton action recognition. In: ICIP (2021)

    Google Scholar 

  8. Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: ICLR (2016)

    Google Scholar 

  9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  10. Holden, D., Saito, J., Komura, T.: A deep learning framework for character motion synthesis and editing. ACM Trans. Graph. (TOG) 35(4), 1–11 (2016)

    Article  Google Scholar 

  11. Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A.: spaCy: industrial-strength Natural Language Processing in Python (2020). https://doi.org/10.5281/zenodo.1212303

  12. Hubert Tsai, Y.H., Huang, L.K., Salakhutdinov, R.: Learning robust visual-semantic embeddings. In: ICCV (2017)

    Google Scholar 

  13. Keselman, L., Iselin Woodfill, J., Grunnet-Jepsen, A., Bhowmik, A.: Intel RealSense stereoscopic depth cameras. In: CVPRW (2017)

    Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  15. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)

    Article  MathSciNet  Google Scholar 

  16. Liu, J., et al.: NTU RGB+D 120: a large-scale benchmark for 3D human activity understanding. TPAMI 42(10), 2684–2701 (2019)

    Article  Google Scholar 

  17. Pedregosa, F., et al.: SciKit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

  18. Pourpanah, F., et al.: A review of generalized zero-shot learning methods. TPAMI 45(4), 4051–4070 (2022)

    Google Scholar 

  19. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  20. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. arXiv preprint arXiv:1908.10084 (2019)

  21. Schonfeld, E., Ebrahimi, S., Sinha, S., Darrell, T., Akata, Z.: Generalized zero-and few-shot learning via aligned variational autoencoders. In: CVPR (2019)

    Google Scholar 

  22. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3D human activity analysis. In: CVPR (2016)

    Google Scholar 

  23. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)

    Google Scholar 

  24. Wray, M., Larlus, D., Csurka, G., Damen, D.: Fine-grained action retrieval through multiple parts-of-speech embeddings. In: ICCV (2019)

    Google Scholar 

  25. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: AAAI. vol. 32 (2018)

    Google Scholar 

  26. Yuan, Y., et al.: HRFormer: high-resolution vision transformer for dense prediction. In: NeurIPS (2021)

    Google Scholar 

  27. Zhang, Z.: Microsoft Kinect sensor and its effect. IEEE Multimedia 19(2), 4–10 (2012)

    Article  Google Scholar 

  28. Zhou, Y., Qiang, W., Rao, A., Lin, N., Su, B., Wang, J.: Zero-shot skeleton-based action recognition via mutual information estimation and maximization. In: ACM MM (2023)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science and Technology Council of Taiwan under grant number 111-2622-8-002-028. The authors would like to thank the NSTC for its generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Wei Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 284 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, SW., Wei, ZX., Chen, WJ., Yu, YH., Yang, CY., Hsu, J.Yj. (2025). SA-DVAE: Improving Zero-Shot Skeleton-Based Action Recognition by Disentangled Variational Autoencoders. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15074. Springer, Cham. https://doi.org/10.1007/978-3-031-72640-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72640-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72639-2

  • Online ISBN: 978-3-031-72640-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics