Abstract
Despite the recent progress in text-to-video generation, existing studies usually overlook the issue that only spatial contents but not temporal motions in synthesized videos are under the control of text. Towards such a challenge, this work presents a practical system, named LivePhoto, which allows users to animate an image of their interest with text descriptions. We first establish a strong baseline that helps a well-learned text-to-image generator (i.e., Stable Diffusion) take an image as a further input. We then equip the improved generator with a motion module for temporal modeling and propose a carefully designed training pipeline to better link texts and motions. In particular, considering the facts that (1) text can only describe motions roughly (e.g., regardless of the moving speed) and (2) text may include both content and motion descriptions, we introduce a motion intensity estimation module as well as a text re-weighting module to reduce the ambiguity of text-to-motion mapping. Empirical evidence suggests that our approach is capable of well decoding motion-related textual instructions into videos, such as actions, camera movements, or even conjuring new contents from thin air (e.g., pouring water into an empty glass). Interestingly, thanks to the proposed intensity learning mechanism, our system offers users an additional control signal (i.e., the motion intensity) besides text for video customization. Project page is xavierchen34.github.io/LivePhoto-Page.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bain, M., Nagrani, A., Varol, G., Zisserman, A.: Frozen in time: a joint video and image encoder for end-to-end retrieval. In: ICCV (2021)
Blattmann, A., et al.: Align your latents: high-resolution video synthesis with latent diffusion models. In: CVPR (2023)
Chai, W., Guo, X., Wang, G., Lu, Y.: StableVideo: text-driven consistency-aware diffusion video editing. In: ICCV (2023)
Chen, J., et al.: PixArt: fast training of diffusion transformer for photorealistic text-to-image synthesis. arXiv:2310.00426 (2023)
Chen, T.S., Lin, C.H., Tseng, H.Y., Lin, T.Y., Yang, M.H.: Motion-conditioned diffusion model for controllable video synthesis. arXiv:2304.14404 (2023)
Chen, X., Huang, L., Liu, Y., Shen, Y., Zhao, D., Zhao, H.: AnyDoor: zero-shot object-level image customization. arXiv:2307.09481 (2023)
Cheng, C.C., Chen, H.Y., Chiu, W.C.: Time flies: animating a still image with time-lapse video as reference. In: CVPR (2020)
Esser, P., Chiu, J., Atighehchian, P., Granskog, J., Germanidis, A.: Structure and content-guided video synthesis with diffusion models. In: ICCV (2023)
Gal, R., et al.: An image is worth one word: personalizing text-to-image generation using textual inversion. arXiv:2208.01618 (2022)
Guo, Y., et al.: AnimateDiff: animate your personalized text-to-image diffusion models without specific tuning. arXiv:2307.04725 (2023)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS (2020)
Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M., Fleet, D.J.: Video diffusion models. arXiv:2204.03458 (2022)
Holynski, A., Curless, B.L., Seitz, S.M., Szeliski, R.: Animating pictures with Eulerian motion fields. In: CVPR (2021)
Hu, E.J., et al.: LoRA: low-rank adaptation of large language models. arXiv:2106.09685 (2021)
Hu, Y., Luo, C., Chen, Z.: Make it move: controllable image-to-video generation with text descriptions. In: CVPR (2022)
Jhou, W.C., Cheng, W.H.: Animating still landscape photographs through cloud motion creation. TMM 18(1), 4–13 (2015)
Karras, J., Holynski, A., Wang, T.C., Kemelmacher-Shlizerman, I.: DreamPose: fashion image-to-video synthesis via stable diffusion. arXiv:2304.06025 (2023)
Kawar, B., et al.: Imagic: text-based real image editing with diffusion models. In: CVPR (2023)
Khachatryan, L., et al.: Text2Video-Zero: text-to-image diffusion models are zero-shot video generators. arXiv:2303.13439 (2023)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv:1312.6114 (2013)
Li, Z., Tucker, R., Snavely, N., Holynski, A.: Generative image dynamics. arXiv:2309.07906 (2023)
Liew, J.H., Yan, H., Zhang, J., Xu, Z., Feng, J.: MagicEdit: high-fidelity and temporally coherent video editing. arXiv:2308.14749 (2023)
Liu, Z., et al.: Cones: concept neurons in diffusion models for customized generation. arXiv:2303.05125 (2023)
Liu, Z., et al.: Cones 2: customizable image synthesis with multiple subjects. arXiv:2305.19327 (2023)
Luan, T.: AnimateDiff-I2V (2023). https://github.com/ykk648/AnimateDiff-I2V
Mahapatra, A., Kulkarni, K.: Controllable animation of fluid elements in still images. In: CVPR (2022)
Meng, C., et al.: SDEdit: guided image synthesis and editing with stochastic differential equations. arXiv:2108.01073 (2021)
Mou, C., et al.: T2I-Adapter: learning adapters to dig out more controllable ability for text-to-image diffusion models. arXiv:2302.08453 (2023)
Okabe, M., Anjyo, K., Igarashi, T., Seidel, H.P.: Animating pictures of fluid using video examples. In: Computer Graphics Forum. Wiley Online Library (2009)
Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv:2304.07193 (2023)
Podell, D., et al.: SDXL: improving latent diffusion models for high-resolution image synthesis. arXiv:2307.01952 (2023)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)
Researchers, P.: PikaLabs: An innovative text-to-video platform, October 2023. https://www.pika.art/
Researchers, R.: Gen-2: The next step forward for generative AI, October 2023. https://research.runwayml.com/gen2
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)
Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. In: CVPR (2023)
Saharia, C., T., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: NeurIPS (2022)
Shalev, Y., Wolf, L.: Image animation with perturbed masks. In: CVPR (2022)
Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: NeurIPS (2019)
Singer, U., et al.: Make-a-Video: text-to-video generation without text-video data. arXiv:2209.14792 (2022)
talesofai: AnimateDiff talesofai (2023). https://github.com/talesofai/AnimateDiff
Wang, T., et al.: DISCO: disentangled control for referring human dance generation in real world. arXiv:2307.00040 (2023)
Wang, X., et al.: VideoComposer: compositional video synthesis with motion controllability. In: NeurIPS (2023)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13(4), 600–612 (2004)
Wu, J.Z., et al.: Tune-a-video: one-shot tuning of image diffusion models for text-to-video generation. In: ICCV (2023)
Xing, J., et al.: DynamiCrafter: animating open-domain images with video diffusion priors. arXiv:2310.12190 (2023)
Xu, J., Mei, T., Yao, T., Rui, Y.: MSR-VTT: a large video description dataset for bridging video and language. In: CVPR, pp. 5288–5296 (2016)
Xue, Z., et al.: RAPHAEL: text-to-image generation via large mixture of diffusion paths. In: NeurIPS (2023)
Yin, S., et al.: NUWA-XL: diffusion over diffusion for extremely long video generation. arXiv:2303.12346 (2023)
Zhang, J., Yan, H., Xu, Z., Feng, J., Liew, J.H.: MagicAvatar: multimodal avatar generation and animation. arXiv:2308.14748 (2023)
Zhang, L., Agrawala, M.: Adding conditional control to text-to-image diffusion models. arXiv:2302.05543 (2023)
Zhang, S., et al.: I2VGen-XL: high-quality image-to-video synthesis via cascaded diffusion models. arXiv:2311.04145 (2023)
Zhang, Y., Xing, Z., Zeng, Y., Fang, Y., Chen, K.: PIA: your personalized image animator via plug-and-play modules in text-to-image models. In: CVPR (2023)
Zhao, J., Zhang, H.: Thin-plate spline motion model for image animation. In: CVPR (2022)
Zhao, R., Wu, T., Guo, G.: Sparse to dense motion transfer for face image animation. In: ICCV (2021)
Acknowledgement
This work is supported by the National Natural Science Foundation of China (No. 62201484), HKU Startup Fund, and HKU Seed Fund for Basic Research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, X. et al. (2025). LivePhoto: Real Image Animation with Text-Guided Motion Control. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15076. Springer, Cham. https://doi.org/10.1007/978-3-031-72649-1_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-72649-1_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72648-4
Online ISBN: 978-3-031-72649-1
eBook Packages: Computer ScienceComputer Science (R0)