Abstract
Recent advancements in few-shot segmentation (FSS) have exploited pixel-by-pixel matching between query and support features, typically based on cross attention, which selectively activate query foreground (FG) features that correspond to the same-class support FG features. However, due to the large receptive fields in deep layers of the backbone, the extracted query and support FG features are inevitably mingled with background (BG) features, impeding the FG-FG matching in cross attention. Hence, the query FG features are fused with less support FG features, i.e., the support information is not well utilized. This paper presents a novel plug-in termed ambiguity elimination network (AENet), which can be plugged into any existing cross attention-based FSS methods. The main idea is to mine discriminative query FG regions to rectify the ambiguous FG features, increasing the proportion of FG information, so as to suppress the negative impacts of the doped BG features. In this way, the FG-FG matching is naturally enhanced. We plug AENet into three baselines CyCTR, SCCAN and HDMNet for evaluation, and their scores are improved by large margins, e.g., the 1-shot performance of SCCAN can be improved by 3.0%+ on both PASCAL-5\(^i\) and COCO-20\(^i\). The code is available at https://github.com/Sam1224/AENet.
G. Lin and C. Long—Co-corresponding authors
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bao, X., Qin, J., Sun, S., Zheng, Y., Wang, X.: Relevant intrinsic feature enhancement network for few-shot semantic segmentation. arXiv preprint arXiv:2312.06474 (2023)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)
Fan, Q., Pei, W., Tai, YW., Tang, C.K.: Self-support few-shot semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13679, pp. 701–719. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19800-7_41
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857 (2017)
Guo, Y., Liu, Y., Georgiou, T., Lew, M.S.: A review of semantic segmentation using deep neural networks. Int. J. Multimedia Inf. Retrieval 7, 87–93 (2018)
Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 297–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_20
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hong, S., Cho, S., Nam, J., Lin, S., Kim, S.: Cost aggregation with 4D convolutional swin transformer for few-shot segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13689, pp. 108–126. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_7
Hu, T., Yang, P., Zhang, C., Yu, G., Mu, Y., Snoek, C.G.: Attention-based multi-context guiding for few-shot semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 8441–8448 (2019)
Iqbal, E., Safarov, S., Bang, S.: MSANet: Multi-similarity and attention guidance for boosting few-shot segmentation. arXiv preprint arXiv:2206.09667 (2022)
Jiao, S., et al.: Mask matching transformer for few-shot segmentation. arXiv preprint arXiv:2301.01208 (2022)
Kang, D., Koniusz, P., Cho, M., Murray, N.: Distilling self-supervised vision transformers for weakly-supervised few-shot classification & segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19627–19638 (2023)
Lang, C., Cheng, G., Tu, B., Han, J.: Learning what not to segment: a new perspective on few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8057–8067 (2022)
Lang, C., Cheng, G., Tu, B., Li, C., Han, J.: Base and meta: a new perspective on few-shot segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 45(9), 10669–10686 (2023)
Lang, C., Tu, B., Cheng, G., Han, J.: Beyond the prototype: Divide-and-conquer proxies for few-shot segmentation. arXiv preprint arXiv:2204.09903 (2022)
Lateef, F., Ruichek, Y.: Survey on semantic segmentation using deep learning techniques. Neurocomputing 338, 321–348 (2019)
Li, G., Jampani, V., Sevilla-Lara, L., Sun, D., Kim, J., Kim, J.: Adaptive prototype learning and allocation for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8334–8343 (2021)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, H., Peng, P., Chen, T., Wang, Q., Yao, Y., Hua, X.S.: FECANet: boosting few-shot semantic segmentation with feature-enhanced context-aware network. IEEE Trans. Multimedia 25, 8580–8592 (2023)
Liu, J., Bao, Y., Xie, G.S., Xiong, H., Sonke, J.J., Gavves, E.: Dynamic prototype convolution network for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11553–11562 (2022)
Liu, Y., Liu, N., Cao, Q., Yao, X., Han, J., Shao, L.: Learning non-target knowledge for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11573–11582 (2022)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Luo, X., Tian, Z., Zhang, T., Yu, B., Tang, Y.Y., Jia, J.: PFENet++: Boosting few-shot semantic segmentation with the noise-filtered context-aware prior mask. arXiv preprint arXiv:2109.13788 (2021)
Nguyen, K., Todorovic, S.: Feature weighting and boosting for few-shot segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 622–631 (2019)
Okazawa, A.: Interclass prototype relation for few-shot segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13689, pp. 362–378. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_21
Park, S., Lee, S., Hyun, S., Seong, H.S., Heo, J.P.: Task-disruptive background suppression for few-shot segmentation. arXiv preprint arXiv:2312.15894 (2023)
Peng, B., et al.: Hierarchical dense correlation distillation for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23641–23651 (2023)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)
Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. arXiv preprint arXiv:1709.03410 (2017)
Shi, X., et al.: Dense cross-query-and-support attention weighted mask aggregation for few-shot segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13680, pp. 151–168. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20044-1_9
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sun, Y., et al.: Singular value fine-tuning: Few-shot segmentation requires few-parameters fine-tuning. arXiv preprint arXiv:2206.06122 (2022)
Tian, Z., Zhao, H., Shu, M., Yang, Z., Li, R., Jia, J.: Prior guided feature enrichment network for few-shot segmentation. IEEE Trans. Pattern Analysis Mach. Intell. 44(2), 1050–1065 (2020)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, H., Zhang, X., Hu, Y., Yang, Y., Cao, X., Zhen, X.: Few-shot semantic segmentation with democratic attention networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 730–746. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_43
Wang, J., Li, J., Chen, C., Zhang, Y., Shen, H., Zhang, T.: Adaptive FSS: a novel few-shot segmentation framework via prototype enhancement. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 38, pp. 5463–5471 (2024)
Wang, J., Li, J., Chen, C., Zhang, Y., Shen, H., Zhang, T.: Adaptive FSS: A novel few-shot segmentation framework via prototype enhancement. arXiv preprint arXiv:2312.15731 (2023)
Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197–9206 (2019)
Wang, Y., Sun, R., Zhang, T.: Rethinking the correlation in few-shot segmentation: A buoys view. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7183–7192 (2023)
Wang, Y., Sun, R., Zhang, Z., Zhang, T.: Adaptive agent transformer for few-shot segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13689, pp. 36–52. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_3
Xie, G.S., Liu, J., Xiong, H., Shao, L.: Scale-aware graph neural network for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5475–5484 (2021)
Xiong, Z., Li, H., Zhu, X.X.: Doubly deformable aggregation of covariance matrices for few-shot segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13680, pp. 133–150. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20044-1_8
Xu, Q., Zhao, W., Lin, G., Long, C.: Self-calibrated cross attention network for few-shot segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 655–665 (2023)
Yang, Y., Chen, Q., Feng, Y., Huang, T.: MIANet: aggregating unbiased instance and general information for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7131–7140 (2023)
Zhang, B., Xiao, J., Qin, T.: Self-guided and cross-guided learning for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8312–8321 (2021)
Zhang, C., Lin, G., Liu, F., Guo, J., Wu, Q., Yao, R.: Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9587–9595 (2019)
Zhang, C., Lin, G., Liu, F., Yao, R., Shen, C.: CANet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5217–5226 (2019)
Zhang, G., Kang, G., Yang, Y., Wei, Y.: Few-shot segmentation via cycle-consistent transformer. Adv. Neural. Inf. Process. Syst. 34, 21984–21996 (2021)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)
Zhou, T., Wang, W., Konukoglu, E., Van Gool, L.: Rethinking semantic segmentation: a prototype view. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2582–2593 (2022)
Zhu, L., Chen, T., Ji, D., Ye, J., Liu, J.: LLaFS: When large-language models meet few-shot segmentation. arXiv preprint arXiv:2311.16926 (2023)
Zhu, L., Chen, T., Yin, J., See, S., Liu, J.: Addressing background context bias in few-shot segmentation through iterative modulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3370–3379 (2024)
Acknowledgement
This study is supported under the RIE2020 Industry Alignment Fund - Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, Q., Lin, G., Loy, C.C., Long, C., Li, Z., Zhao, R. (2025). Eliminating Feature Ambiguity for Few-Shot Segmentation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15061. Springer, Cham. https://doi.org/10.1007/978-3-031-72646-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-72646-0_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72645-3
Online ISBN: 978-3-031-72646-0
eBook Packages: Computer ScienceComputer Science (R0)