Nothing Special   »   [go: up one dir, main page]

Skip to main content

Eliminating Feature Ambiguity for Few-Shot Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Recent advancements in few-shot segmentation (FSS) have exploited pixel-by-pixel matching between query and support features, typically based on cross attention, which selectively activate query foreground (FG) features that correspond to the same-class support FG features. However, due to the large receptive fields in deep layers of the backbone, the extracted query and support FG features are inevitably mingled with background (BG) features, impeding the FG-FG matching in cross attention. Hence, the query FG features are fused with less support FG features, i.e., the support information is not well utilized. This paper presents a novel plug-in termed ambiguity elimination network (AENet), which can be plugged into any existing cross attention-based FSS methods. The main idea is to mine discriminative query FG regions to rectify the ambiguous FG features, increasing the proportion of FG information, so as to suppress the negative impacts of the doped BG features. In this way, the FG-FG matching is naturally enhanced. We plug AENet into three baselines CyCTR, SCCAN and HDMNet for evaluation, and their scores are improved by large margins, e.g., the 1-shot performance of SCCAN can be improved by 3.0%+ on both PASCAL-5\(^i\) and COCO-20\(^i\). The code is available at https://github.com/Sam1224/AENet.

G. Lin and C. Long—Co-corresponding authors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bao, X., Qin, J., Sun, S., Zheng, Y., Wang, X.: Relevant intrinsic feature enhancement network for few-shot semantic segmentation. arXiv preprint arXiv:2312.06474 (2023)

  2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  3. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  4. Fan, Q., Pei, W., Tai, YW., Tang, C.K.: Self-support few-shot semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13679, pp. 701–719. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19800-7_41

  5. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857 (2017)

  6. Guo, Y., Liu, Y., Georgiou, T., Lew, M.S.: A review of semantic segmentation using deep neural networks. Int. J. Multimedia Inf. Retrieval 7, 87–93 (2018)

    Article  Google Scholar 

  7. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Simultaneous detection and segmentation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 297–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_20

    Chapter  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hong, S., Cho, S., Nam, J., Lin, S., Kim, S.: Cost aggregation with 4D convolutional swin transformer for few-shot segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13689, pp. 108–126. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_7

  10. Hu, T., Yang, P., Zhang, C., Yu, G., Mu, Y., Snoek, C.G.: Attention-based multi-context guiding for few-shot semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 8441–8448 (2019)

    Google Scholar 

  11. Iqbal, E., Safarov, S., Bang, S.: MSANet: Multi-similarity and attention guidance for boosting few-shot segmentation. arXiv preprint arXiv:2206.09667 (2022)

  12. Jiao, S., et al.: Mask matching transformer for few-shot segmentation. arXiv preprint arXiv:2301.01208 (2022)

  13. Kang, D., Koniusz, P., Cho, M., Murray, N.: Distilling self-supervised vision transformers for weakly-supervised few-shot classification & segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19627–19638 (2023)

    Google Scholar 

  14. Lang, C., Cheng, G., Tu, B., Han, J.: Learning what not to segment: a new perspective on few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8057–8067 (2022)

    Google Scholar 

  15. Lang, C., Cheng, G., Tu, B., Li, C., Han, J.: Base and meta: a new perspective on few-shot segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 45(9), 10669–10686 (2023)

    Google Scholar 

  16. Lang, C., Tu, B., Cheng, G., Han, J.: Beyond the prototype: Divide-and-conquer proxies for few-shot segmentation. arXiv preprint arXiv:2204.09903 (2022)

  17. Lateef, F., Ruichek, Y.: Survey on semantic segmentation using deep learning techniques. Neurocomputing 338, 321–348 (2019)

    Article  Google Scholar 

  18. Li, G., Jampani, V., Sevilla-Lara, L., Sun, D., Kim, J., Kim, J.: Adaptive prototype learning and allocation for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8334–8343 (2021)

    Google Scholar 

  19. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  20. Liu, H., Peng, P., Chen, T., Wang, Q., Yao, Y., Hua, X.S.: FECANet: boosting few-shot semantic segmentation with feature-enhanced context-aware network. IEEE Trans. Multimedia 25, 8580–8592 (2023)

    Google Scholar 

  21. Liu, J., Bao, Y., Xie, G.S., Xiong, H., Sonke, J.J., Gavves, E.: Dynamic prototype convolution network for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11553–11562 (2022)

    Google Scholar 

  22. Liu, Y., Liu, N., Cao, Q., Yao, X., Han, J., Shao, L.: Learning non-target knowledge for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11573–11582 (2022)

    Google Scholar 

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  24. Luo, X., Tian, Z., Zhang, T., Yu, B., Tang, Y.Y., Jia, J.: PFENet++: Boosting few-shot semantic segmentation with the noise-filtered context-aware prior mask. arXiv preprint arXiv:2109.13788 (2021)

  25. Nguyen, K., Todorovic, S.: Feature weighting and boosting for few-shot segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 622–631 (2019)

    Google Scholar 

  26. Okazawa, A.: Interclass prototype relation for few-shot segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13689, pp. 362–378. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_21

  27. Park, S., Lee, S., Hyun, S., Seong, H.S., Heo, J.P.: Task-disruptive background suppression for few-shot segmentation. arXiv preprint arXiv:2312.15894 (2023)

  28. Peng, B., et al.: Hierarchical dense correlation distillation for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23641–23651 (2023)

    Google Scholar 

  29. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  30. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  31. Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. arXiv preprint arXiv:1709.03410 (2017)

  32. Shi, X., et al.: Dense cross-query-and-support attention weighted mask aggregation for few-shot segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13680, pp. 151–168. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20044-1_9

  33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  34. Sun, Y., et al.: Singular value fine-tuning: Few-shot segmentation requires few-parameters fine-tuning. arXiv preprint arXiv:2206.06122 (2022)

  35. Tian, Z., Zhao, H., Shu, M., Yang, Z., Li, R., Jia, J.: Prior guided feature enrichment network for few-shot segmentation. IEEE Trans. Pattern Analysis Mach. Intell. 44(2), 1050–1065 (2020)

    Google Scholar 

  36. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  37. Wang, H., Zhang, X., Hu, Y., Yang, Y., Cao, X., Zhen, X.: Few-shot semantic segmentation with democratic attention networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 730–746. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_43

    Chapter  Google Scholar 

  38. Wang, J., Li, J., Chen, C., Zhang, Y., Shen, H., Zhang, T.: Adaptive FSS: a novel few-shot segmentation framework via prototype enhancement. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 38, pp. 5463–5471 (2024)

    Google Scholar 

  39. Wang, J., Li, J., Chen, C., Zhang, Y., Shen, H., Zhang, T.: Adaptive FSS: A novel few-shot segmentation framework via prototype enhancement. arXiv preprint arXiv:2312.15731 (2023)

  40. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197–9206 (2019)

    Google Scholar 

  41. Wang, Y., Sun, R., Zhang, T.: Rethinking the correlation in few-shot segmentation: A buoys view. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7183–7192 (2023)

    Google Scholar 

  42. Wang, Y., Sun, R., Zhang, Z., Zhang, T.: Adaptive agent transformer for few-shot segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13689, pp. 36–52. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_3

  43. Xie, G.S., Liu, J., Xiong, H., Shao, L.: Scale-aware graph neural network for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5475–5484 (2021)

    Google Scholar 

  44. Xiong, Z., Li, H., Zhu, X.X.: Doubly deformable aggregation of covariance matrices for few-shot segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022. ECCV 2022. LNCS, vol. 13680, pp. 133–150. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20044-1_8

  45. Xu, Q., Zhao, W., Lin, G., Long, C.: Self-calibrated cross attention network for few-shot segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 655–665 (2023)

    Google Scholar 

  46. Yang, Y., Chen, Q., Feng, Y., Huang, T.: MIANet: aggregating unbiased instance and general information for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7131–7140 (2023)

    Google Scholar 

  47. Zhang, B., Xiao, J., Qin, T.: Self-guided and cross-guided learning for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8312–8321 (2021)

    Google Scholar 

  48. Zhang, C., Lin, G., Liu, F., Guo, J., Wu, Q., Yao, R.: Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9587–9595 (2019)

    Google Scholar 

  49. Zhang, C., Lin, G., Liu, F., Yao, R., Shen, C.: CANet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5217–5226 (2019)

    Google Scholar 

  50. Zhang, G., Kang, G., Yang, Y., Wei, Y.: Few-shot segmentation via cycle-consistent transformer. Adv. Neural. Inf. Process. Syst. 34, 21984–21996 (2021)

    Google Scholar 

  51. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  52. Zhou, T., Wang, W., Konukoglu, E., Van Gool, L.: Rethinking semantic segmentation: a prototype view. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2582–2593 (2022)

    Google Scholar 

  53. Zhu, L., Chen, T., Ji, D., Ye, J., Liu, J.: LLaFS: When large-language models meet few-shot segmentation. arXiv preprint arXiv:2311.16926 (2023)

  54. Zhu, L., Chen, T., Yin, J., See, S., Liu, J.: Addressing background context bias in few-shot segmentation through iterative modulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3370–3379 (2024)

    Google Scholar 

Download references

Acknowledgement

This study is supported under the RIE2020 Industry Alignment Fund - Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianxiong Xu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 823 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Q., Lin, G., Loy, C.C., Long, C., Li, Z., Zhao, R. (2025). Eliminating Feature Ambiguity for Few-Shot Segmentation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15061. Springer, Cham. https://doi.org/10.1007/978-3-031-72646-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72646-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72645-3

  • Online ISBN: 978-3-031-72646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics