Nothing Special   »   [go: up one dir, main page]

Skip to main content

FreeInit: Bridging Initialization Gap in Video Diffusion Models

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Though diffusion-based video generation has witnessed rapid progress, the inference results of existing models still exhibit unsatisfactory temporal consistency and unnatural dynamics. In this paper, we delve deep into the noise initialization of video diffusion models, and discover an implicit training-inference gap that attributes to the unsatisfactory inference quality. Our key findings are: 1) the spatial-temporal frequency distribution of the initial noise at inference is intrinsically different from that for training, and 2) the denoising process is significantly influenced by the low-frequency components of the initial noise. Motivated by these observations, we propose a concise yet effective inference sampling strategy, FreeInit, which significantly improves temporal consistency of videos generated by diffusion models. Through iteratively refining the spatial-temporal low-frequency components of the initial latent during inference, FreeInit is able to compensate the initialization gap between training and inference, thus effectively improving the subject appearance and temporal consistency of generation results. Extensive experiments demonstrate that FreeInit consistently enhances the generation results of various text-to-video generation models without additional training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blattmann, A., et al.: Align your latents: high-resolution video synthesis with latent diffusion models. In: CVPR (2023)

    Google Scholar 

  2. Brooks, T., et al.: Generating long videos of dynamic scenes. In: NeurIPS (2022)

    Google Scholar 

  3. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)

    Google Scholar 

  4. Chen, H., et al.: VideoCrafter1: open diffusion models for high-quality video generation. arXiv preprint arXiv:2310.19512 (2023)

  5. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: NeurIPS (2021)

    Google Scholar 

  6. Everaert, M.N., Fitsios, A., Bocchio, M., Arpa, S., Süsstrunk, S., Achanta, R.: Exploiting the signal-leak bias in diffusion models. arXiv preprint arXiv:2309.15842 (2023)

  7. Ge, S., et al.: Preserve your own correlation: a noise prior for video diffusion models. In: ICCV (2023)

    Google Scholar 

  8. Goodfellow, I.J., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  9. Gu, J., et al.: Reuse and diffuse: iterative denoising for text-to-video generation. arXiv preprint arXiv:2309.03549 (2023)

  10. Guo, Y., et al.: AnimateDiff: animate your personalized text-to-image diffusion models without specific tuning. arXiv preprint arXiv:2307.04725 (2023)

  11. Harvey, W., Naderiparizi, S., Masrani, V., Weilbach, C., Wood, F.: Flexible diffusion modeling of long videos. arXiv preprint arXiv:2205.11495 (2022)

  12. He, Y., Yang, T., Zhang, Y., Shan, Y., Chen, Q.: Latent video diffusion models for high-fidelity video generation with arbitrary lengths. arXiv preprint arXiv:2211.13221 (2022)

  13. Ho, J., et al.: Imagen video: high definition video generation with diffusion models. arXiv preprint arXiv:2210.02303 (2022)

  14. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS (2020)

    Google Scholar 

  15. Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M., Fleet, D.J.: Video diffusion models. arXiv preprint arXiv:2204.03458 (2022)

  16. Hong, W., Ding, M., Zheng, W., Liu, X., Tang, J.: CogVideo: large-scale pretraining for text-to-video generation via transformers. arXiv preprint arXiv:2205.15868 (2022)

  17. Huang, Z., et al.: VBench: comprehensive benchmark suite for video generative models. arXiv preprint arXiv:2311.17982 (2023)

  18. Jiang, Y., Yang, S., Koh, T.L., Wu, W., Loy, C.C., Liu, Z.: Text2Performer: text-driven human video generation. In: ICCV (2023)

    Google Scholar 

  19. Karras, T., et al.: Alias-free generative adversarial networks. In: NeurIPS (2021)

    Google Scholar 

  20. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  21. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: CVPR (2020)

    Google Scholar 

  22. Khachatryan, L., Movsisyan, A., Tadevosyan, V., Henschel, R., Wang, Z., Navasardyan, S., Shi, H.: Text2Video-Zero: text-to-image diffusion models are zero-shot video generators. arXiv preprint arXiv:2303.13439 (2023)

  23. Lin, S., Liu, B., Li, J., Yang, X.: Common diffusion noise schedules and sample steps are flawed. arXiv preprint arXiv:2305.08891 (2023)

  24. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Repaint: inpainting using denoising diffusion probabilistic models. In: CVPR (2022)

    Google Scholar 

  25. Luo, Z., et al.: VideoFusion: decomposed diffusion models for high-quality video generation. In: CVPR (2023)

    Google Scholar 

  26. Nichol, A., et al.: GLIDE: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)

  27. Oquab, M., et al.: DINOV2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

  28. Podell, D., et al.: SDXL: improving latent diffusion models for high-resolution image synthesis. arXiv preprint arXiv:2307.01952 (2023)

  29. Qiu, H., et al.: FreeNoise: tuning-free longer video diffusion via noise rescheduling. arXiv preprint arXiv:2310.15169 (2023)

  30. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  31. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125 (2022)

  32. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)

    Google Scholar 

  33. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: MICCAI (2015)

    Google Scholar 

  34. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. In: CVPR (2023)

    Google Scholar 

  35. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487 (2022)

  36. Singer, U., et al.: Make-a-video: text-to-video generation without text-video data. arXiv preprint arXiv:2209.14792 (2022)

  37. Skorokhodov, I., Tulyakov, S., Elhoseiny, M.: StyleGAN-V: a continuous video generator with the price, image quality and perks of StyleGAN2. In: CVPR (2022)

    Google Scholar 

  38. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: ICML (2015)

    Google Scholar 

  39. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: ICLR (2021)

    Google Scholar 

  40. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. In: ICLR (2021)

    Google Scholar 

  41. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  42. Tian, Y., et al.: A good image generator is what you need for high-resolution video synthesis. arXiv preprint arXiv:2104.15069 (2021)

  43. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  44. Villegas, R., et al.: Phenaki: variable length video generation from open domain textual description. arXiv preprint arXiv:2210.02399 (2022)

  45. Wang, J., Yuan, H., Chen, D., Zhang, Y., Wang, X., Zhang, S.: ModelScope text-to-video technical report. arXiv preprint arXiv:2308.06571 (2023)

  46. Wang, Y., et al.: LAVIE: high-quality video generation with cascaded latent diffusion models. arXiv preprint arXiv:2309.15103 (2023)

  47. Wu, C., et al.: GODIVA: generating open-domain videos from natural descriptions (2021)

    Google Scholar 

  48. Wu, C., et al.: Nüwa: visual synthesis pre-training for neural visual world creation (2021)

    Google Scholar 

  49. Xu, J., Mei, T., Yao, T., Rui, Y.: MSR-VTT: a large video description dataset for bridging video and language. In: CVPR (2016)

    Google Scholar 

  50. Zhang, D.J., et al.: Show-1: marrying pixel and latent diffusion models for text-to-video generation (2023)

    Google Scholar 

  51. Zhou, D., Wang, W., Yan, H., Lv, W., Zhu, Y., Feng, J.: MagicVideo: efficient video generation with latent diffusion models. arXiv preprint arXiv:2211.11018 (2022)

  52. Zhou, D., Wang, W., Yan, H., Lv, W., Zhu, Y., Feng, J.: MagicVideo: efficient video generation with latent diffusion models (2023)

    Google Scholar 

Download references

Acknowledgement

This study is supported by the Ministry of Education, Singapore, under its MOE AcRF Tier 2 (MOET2EP20221- 0012), NTU NAP, and under the RIE2020 Industry Alignment Fund - Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziwei Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 13912 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, T., Si, C., Jiang, Y., Huang, Z., Liu, Z. (2025). FreeInit: Bridging Initialization Gap in Video Diffusion Models. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15061. Springer, Cham. https://doi.org/10.1007/978-3-031-72646-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72646-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72645-3

  • Online ISBN: 978-3-031-72646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics