Nothing Special   »   [go: up one dir, main page]

Skip to main content

COHO: Context-Sensitive City-Scale Hierarchical Urban Layout Generation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15071))

Included in the following conference series:

  • 112 Accesses

Abstract

The generation of large-scale urban layouts has garnered substantial interest across various disciplines. Prior methods have utilized procedural generation requiring manual rule coding or deep learning needing abundant data. However, prior approaches have not considered the context-sensitive nature of urban layout generation. Our approach addresses this gap by leveraging a canonical graph representation for the entire city, which facilitates scalability and captures the multi-layer semantics inherent in urban layouts. We introduce a novel graph-based masked autoencoder (GMAE) for city-scale urban layout generation. The method encodes attributed buildings, city blocks, communities and cities into a unified graph structure, enabling self-supervised masked training for graph autoencoder. Additionally, we employ scheduled iterative sampling for 2.5D layout generation, prioritizing the generation of important city blocks and buildings. Our approach achieves good realism, semantic consistency, and correctness across the heterogeneous urban styles in 330 US cities. Codes and datasets are released at https://github.com/Arking1995/COHO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Climate and economic justice screening tool. https://screeningtool.geoplatform.gov/

  2. Arroyo, D.M., Postels, J., Tombari, F.: Variational transformer networks for layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13642–13652 (2021)

    Google Scholar 

  3. Bhatt, M., et al.: Design and deployment of photo2building: a cloud-based procedural modeling tool as a service. In: Practice and Experience in Advanced Research Computing, pp. 132–138 (2020)

    Google Scholar 

  4. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying mmd GANs. arXiv preprint arXiv:1801.01401 (2018)

  5. Bokeloh, M., Wand, M., Seidel, H.P.: A connection between partial symmetry and inverse procedural modeling. In: ACM SIGGRAPH 2010 Papers, pp. 1–10 (2010)

    Google Scholar 

  6. Brooks, T., et al.: Video generation models as world simulators (2024). https://openai.com/research/video-generation-models-as-world-simulators

  7. Bureau, U.S.C.: Topologically integrated geographic encoding and referencing. https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html

  8. Chai, L., Tucker, R., Li, Z., Isola, P., Snavely, N.: Persistent nature: a generative model of unbounded 3D worlds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20863–20874 (2023)

    Google Scholar 

  9. Chai, S., Zhuang, L., Yan, F.: LayoutDM: transformer-based diffusion model for layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18349–18358 (2023)

    Google Scholar 

  10. Chang, H., Zhang, H., Jiang, L., Liu, C., Freeman, W.T.: MaskGIT: masked generative image transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11315–11325 (2022)

    Google Scholar 

  11. Chang, K.H., Cheng, C.Y., Luo, J., Murata, S., Nourbakhsh, M., Tsuji, Y.: Building-GAN: graph-conditioned architectural volumetric design generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11956–11965 (2021)

    Google Scholar 

  12. Chen, Z., Wang, G., Liu, Z.: Scenedreamer: unbounded 3D scene generation from 2D image collections. arXiv preprint arXiv:2302.01330 (2023)

  13. Deng, J., et al.: CityGen: infinite and controllable 3D city layout generation. arXiv preprint arXiv:2312.01508 (2023)

  14. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  15. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  16. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12873–12883 (2021)

    Google Scholar 

  17. Gupta, K., Lazarow, J., Achille, A., Davis, L.S., Mahadevan, V., Shrivastava, A.: Layouttransformer: Layout generation and completion with self-attention. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1004–1014 (2021)

    Google Scholar 

  18. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  19. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  20. He, L., Aliaga, D.: Globalmapper: arbitrary-shaped urban layout generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 454–464 (2023)

    Google Scholar 

  21. He, L., Lu, Y., Corring, J., Florencio, D., Zhang, C.: Diffusion-based document layout generation. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds.) Document Analysis and Recognition - ICDAR 2023. LNCS, pp. 361–378. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-41676-7_21

    Chapter  Google Scholar 

  22. He, L., Shan, J., Aliaga, D.: Generative building feature estimation from satellite images. IEEE Trans. Geosci. Remote Sens. 61, 1–13 (2023)

    Google Scholar 

  23. Heris, M.P., Foks, N.L., Bagstad, K.J., Troy, A., Ancona, Z.H.: A rasterized building footprint dataset for the united states. Sci. Data 7(1), 207 (2020)

    Article  Google Scholar 

  24. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local NASH equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  25. Hou, Z., et al.: Graphmae2: a decoding-enhanced masked self-supervised graph learner. In: Proceedings of the ACM Web Conference 2023, pp. 737–746 (2023)

    Google Scholar 

  26. Hou, Z., et al.: GraphMAE: self-supervised masked graph autoencoders. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 594–604 (2022)

    Google Scholar 

  27. Hua, H., et al.: Finematch: aspect-based fine-grained image and text mismatch detection and correction. arXiv preprint arXiv:2404.14715 (2024)

  28. Hui, M., Zhang, Z., Zhang, X., Xie, W., Wang, Y., Lu, Y.: Unifying layout generation with a decoupled diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1942–1951 (2023)

    Google Scholar 

  29. Inoue, N., Kikuchi, K., Simo-Serra, E., Otani, M., Yamaguchi, K.: LayoutDM: discrete diffusion model for controllable layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10167–10176 (2023)

    Google Scholar 

  30. Jiang, Z., et al.: Layoutformer++: conditional graphic layout generation via constraint serialization and decoding space restriction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18403–18412 (2023)

    Google Scholar 

  31. Jyothi, A.A., Durand, T., He, J., Sigal, L., Mori, G.: LayoutVAE: stochastic scene layout generation from a label set. In: Proceedings of the IEEE/CVF International Conference on Computer Vision pp. 9895–9904 (2019)

    Google Scholar 

  32. Jyothi, A.A., Durand, T., He, J., Sigal, L., Mori, G.: LayoutVAE: stochastic scene layout generation from a label set. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9894–9903 (2019). https://doi.org/10.1109/ICCV.2019.00999

  33. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  34. Li, J., Yang, J., Hertzmann, A., Zhang, J., Xu, T.: LayoutGAN: synthesizing graphic layouts with vector-wireframe adversarial networks. IEEE Trans. Pattern Anal. Mach. Intell. 43(7), 2388–2399 (2020)

    Article  Google Scholar 

  35. Li, T., Chang, H., Mishra, S., Zhang, H., Katabi, D., Krishnan, D.: Mage: masked generative encoder to unify representation learning and image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2142–2152 (2023)

    Google Scholar 

  36. Li, Z., Wang, Q., Snavely, N., Kanazawa, A.: Infinitenature-zero: learning perpetual view generation of natural scenes from single images. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13661, pp. 515–534. Springer, Cham (2022)

    Google Scholar 

  37. Lin, C.H., Lee, H.Y., Cheng, Y.C., Tulyakov, S., Yang, M.H.: InfinityGAN: towards infinite-pixel image synthesis. arXiv preprint arXiv:2104.03963 (2021)

  38. Lin, C.H., et al.: Infinicity: infinite-scale city synthesis. arXiv preprint arXiv:2301.09637 (2023)

  39. Lipp, M., Scherzer, D., Wonka, P., Wimmer, M.: Interactive modeling of city layouts using layers of procedural content. In: Computer Graphics Forum, vol. 30, pp. 345–354. Wiley Online Library (2011)

    Google Scholar 

  40. Ma, H., Zeng, D., Liu, Y.: Learning individualized treatment rules with many treatments: a supervised clustering approach using adaptive fusion. Adv. Neural. Inf. Process. Syst. 35, 15956–15969 (2022)

    Google Scholar 

  41. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  42. Nauata, N., Chang, K.-H., Cheng, C.-Y., Mori, G., Furukawa, Y.: House-GAN: relational generative adversarial networks for graph-constrained house layout generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020, Part I. LNCS, vol. 12346, pp. 162–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_10

    Chapter  Google Scholar 

  43. OpenStreetMap contributors (2017). Planet dump retrieved from https://planet.osm.org. https://www.openstreetmap.org

  44. Para, W., Guerrero, P., Kelly, T., Guibas, L.J., Wonka, P.: Generative layout modeling using constraint graphs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6690–6700 (2021)

    Google Scholar 

  45. Patel, P., Kalyanam, R., He, L., Aliaga, D., Niyogi, D.: Deep learning-based urban morphology for city-scale environmental modeling. PNAS Nexus 2(3), pgad027 (2023)

    Google Scholar 

  46. Patil, A.G., Ben-Eliezer, O., Perel, O., Averbuch-Elor, H.: Read: recursive autoencoders for document layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 544–545 (2020)

    Google Scholar 

  47. Peebles, W., Xie, S.: Scalable diffusion models with transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205 (2023)

    Google Scholar 

  48. Podell, D., et al.: SDXL: improving latent diffusion models for high-resolution image synthesis. arXiv preprint arXiv:2307.01952 (2023)

  49. Shen, Y., Ma, W.C., Wang, S.: SGAM: building a virtual 3d world through simultaneous generation and mapping. Adv. Neural. Inf. Process. Syst. 35, 22090–22102 (2022)

    Google Scholar 

  50. Sheng, Y., et al.: Controllable shadow generation using pixel height maps. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13683, pp. 240–256. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20050-2_15

    Chapter  Google Scholar 

  51. Sheng, Y., et al.: Dr. bokeh: differentiable occlusion-aware bokeh rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4515–4525 (2024)

    Google Scholar 

  52. Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., Sun, Y.: Masked label prediction: Unified message passing model for semi-supervised classification. arXiv preprint arXiv:2009.03509 (2020)

  53. Song, Y., et al.: Objectstitch: object compositing with diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18310–18319 (2023)

    Google Scholar 

  54. Song, Y., et al.: Imprint: generative object compositing by learning identity-preserving representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8048–8058 (2024)

    Google Scholar 

  55. Tabata, S., Yoshihara, H., Maeda, H., Yokoyama, K.: Automatic layout generation for graphical design magazines. In: ACM SIGGRAPH 2019 Posters, pp. 1–2 (2019)

    Google Scholar 

  56. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  57. Vanegas, C.A., Kelly, T., Weber, B., Halatsch, J., Aliaga, D.G., Müller, P.: Procedural generation of parcels in urban modeling. In: Computer Graphics Forum, vol. 31, pp. 681–690. Wiley Online Library (2012)

    Google Scholar 

  58. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  59. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al.: Graph attention networks. Stat 1050(20), 10–48550 (2017)

    Google Scholar 

  60. Wu, W., Fu, X.M., Tang, R., Wang, Y., Qi, Y.H., Liu, L.: Data-driven interior plan generation for residential buildings. ACM Trans. Graph. (TOG) 38(6), 1–12 (2019)

    Article  Google Scholar 

  61. Xie, H., Chen, Z., Hong, F., Liu, Z.: Citydreamer: compositional generative model of unbounded 3d cities. arXiv preprint arXiv:2309.00610 (2023)

  62. Xu, L., et al.: Blockplanner: city block generation with vectorized graph representation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5077–5086 (2021)

    Google Scholar 

  63. Yan, W., Zhang, Y., Abbeel, P., Srinivas, A.: VideoGPT: video generation using VQ-VAE and transformers. arXiv preprint arXiv:2104.10157 (2021)

  64. Yang, C.F., Fan, W.C., Yang, F.E., Wang, Y.C.F.: LayoutTransformer: scene layout generation with conceptual and spatial diversity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3732–3741 (2021)

    Google Scholar 

  65. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  66. Zhang, X., Ma, W., Varinlioglu, G., Rauh, N., He, L., Aliaga, D.: Guided pluralistic building contour completion. Vis. Comput. 38(9), 3205–3216 (2022)

    Article  Google Scholar 

  67. Zheng, X., Qiao, X., Cao, Y., Lau, R.W.: Content-aware generative modeling of graphic design layouts. ACM Trans. Graph. (TOG) 38(4), 1–15 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded in part by NSF Grant #2107096 and NSF Grant #1835739.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu He .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 11614 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, L., Aliaga, D. (2025). COHO: Context-Sensitive City-Scale Hierarchical Urban Layout Generation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15071. Springer, Cham. https://doi.org/10.1007/978-3-031-72624-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72624-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72623-1

  • Online ISBN: 978-3-031-72624-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics