Abstract
Medical vision-language models (Med-VLMs) trained on large datasets of medical image-text pairs and later fine-tuned for specific tasks have emerged as a mainstream paradigm in medical image analysis. However, recent studies have highlighted the susceptibility of these Med-VLMs to adversarial attacks, raising concerns about their safety and robustness. Randomized smoothing is a well-known technique for turning any classifier into a model that is certifiably robust to adversarial perturbations. However, this approach requires retraining the Med-VLM-based classifier so that it classifies well under Gaussian noise, which is often infeasible in practice. In this paper, we propose a novel framework called PromptSmooth to achieve efficient certified robustness of Med-VLMs by leveraging the concept of prompt learning. Given any pre-trained Med-VLM, PromptSmooth adapts it to handle Gaussian noise by learning textual prompts in a zero-shot or few-shot manner, achieving a delicate balance between accuracy and robustness, while minimizing the computational overhead. Moreover, PromptSmooth requires only a single model to handle multiple noise levels, which substantially reduces the computational cost compared to traditional methods that rely on training a separate model for each noise level. Comprehensive experiments based on three Med-VLMs and across six downstream datasets of various imaging modalities demonstrate the efficacy of PromptSmooth. Our code and models are available at https://github.com/nhussein/PromptSmooth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In: International conference on machine learning. pp. 274–283. PMLR (2018)
Azad, B., Azad, R., Eskandari, S., Bozorgpour, A., Kazerouni, A., Rekik, I., Merhof, D.: Foundational models in medical imaging: A comprehensive survey and future vision. arXiv preprint arXiv:2310.18689 (2023)
Carlini, N., Tramer, F., Dvijotham, K.D., Rice, L., Sun, M., Kolter, J.Z.: (certified!!) adversarial robustness for free! arXiv preprint arXiv:2206.10550 (2022)
Cohen, J., Rosenfeld, E., Kolter, Z.: Certified adversarial robustness via randomized smoothing. In: international conference on machine learning. pp. 1310–1320. PMLR (2019)
Dong, J., Chen, J., Xie, X., Lai, J., Chen, H.: Adversarial attack and defense for medical image analysis: Methods and applications. arXiv preprint arXiv:2303.14133 (2023)
Finlayson, S.G., Bowers, J.D., Ito, J., Zittrain, J.L., Beam, A.L., Kohane, I.S.: Adversarial attacks on medical machine learning. Science 363(6433), 1287–1289 (2019)
Gamper, J., Alemi Koohbanani, N., Benet, K., Khuram, A., Rajpoot, N.: Pannuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification. In: Digital Pathology: 15th European Congress, ECDP 2019, Warwick, UK, April 10–13, 2019, Proceedings 15. pp. 11–19. Springer (2019)
Han, T., Nebelung, S., Khader, F., Wang, T., Mueller-Franzes, C., Försch, S., Kleesiek, C., Bressem, K.K., et al.: Medical foundation models are susceptible to targeted misinformation attacks. arXiv preprint arXiv:2309.17007 (2023)
Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T.J., Zou, J.: A visual–language foundation model for pathology image analysis using medical twitter. Nature medicine 29(9), 2307–2316 (2023)
Ikezogwo, W., Seyfioglu, S., Ghezloo, F., Geva, D., Sheikh Mohammed, F., Anand, P.K., Krishna, R., Shapiro, L.: Quilt-1m: One million image-text pairs for histopathology. Advances in Neural Information Processing Systems 36 (2024)
Kather, J.N., Krisam, J., Charoentong, P., Luedde, T., Herpel, E., Weis, C.A., Gaiser, T., Marx, A., Valous, N.A., Ferber, D., et al.: Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS medicine 16(1), e1002730 (2019)
Kriegsmann, K., Lobers, F., Zgorzelski, C., Kriegsmann, J., Janssen, C., Meliss, R.R., Muley, T., Sack, U., Steinbuss, G., Kriegsmann, M.: Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections. Frontiers in Oncology 12, 1022967 (2022)
Kumari, A., Bhardwaj, D., Jindal, S., Gupta, S.: Trust, but verify: A survey of randomized smoothing techniques. arXiv preprint arXiv:2312.12608 (2023)
Laousy, O., Araujo, A., Chassagnon, G., Paragios, N., Revel, M.P., Vakalopoulou, M.: Certification of deep learning models for medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 611–621. Springer (2023)
Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Certified robustness to adversarial examples with differential privacy. In: 2019 IEEE symposium on security and privacy (SP). pp. 656–672. IEEE (2019)
Li, L., Xie, T., Li, B.: Sok: Certified robustness for deep neural networks. In: 2023 IEEE symposium on security and privacy (SP). pp. 1289–1310. IEEE (2023)
Qiu, K., Zhang, H., Wu, Z., Lin, S.: Exploring transferability for randomized smoothing. arXiv preprint arXiv:2312.09020 (2023)
Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from natural language supervision. In: International conference on machine learning. pp. 8748–8763. PMLR (2021)
Salman, H., Sun, M., Yang, G., Kapoor, A., Kolter, J.Z.: Denoised smoothing: A provable defense for pretrained classifiers. Advances in Neural Information Processing Systems 33, 21945–21957 (2020)
Shih, G., Wu, C.C., Halabi, S.S., Kohli, M.D., Prevedello, L.M., Cook, T.S., Sharma, A., Amorosa, J.K., Arteaga, V., Galperin-Aizenberg, M., et al.: Augmenting the national institutes of health chest radiograph dataset with expert annotations of possible pneumonia. Radiology: Artificial Intelligence 1(1), e180041 (2019)
Shrestha, P., Amgain, S., Khanal, B., Linte, C.A., Bhattarai, B.: Medical vision language pretraining: A survey. arXiv preprint arXiv:2312.06224 (2023)
Shu, M., Nie, W., Huang, D.A., Yu, Z., Goldstein, T., Anandkumar, A., Xiao, C.: Test-time prompt tuning for zero-shot generalization in vision-language models. Advances in Neural Information Processing Systems 35, 14274–14289 (2022)
Silva-Rodriguez, J., Chakor, H., Kobbi, R., Dolz, J., Ayed, I.B.: A foundation language-image model of the retina (flair): Encoding expert knowledge in text supervision. arXiv preprint arXiv:2308.07898 (2023)
Silva-Rodríguez, J., Colomer, A., Sales, M.A., Molina, R., Naranjo, V.: Going deeper through the gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection. Computer methods and programs in biomedicine 195, 105637 (2020)
Tawsifur, R., Amith, K., Yazan, Q., Anas, T., Serkan, K., Abul, K.S.B., Tariqul, I.M., Somaya, A.M.: Zughaier susu m, khan muhammad salman, et al. Exploring the effect of image enhancement techniques on covid-19 detection using chest x-ray images. Computers in biology and medicine 132, 104319 (2021)
Wang, Z., Wu, Z., Agarwal, D., Sun, J.: Medclip: Contrastive learning from unpaired medical images and text. arXiv preprint arXiv:2210.10163 (2022)
Zhang, J., Kapse, S., Ma, K., Prasanna, P., Saltz, J., Vakalopoulou, M., Samaras, D.: Prompt-mil: Boosting multi-instance learning schemes via task-specific prompt tuning. arXiv preprint arXiv:2303.12214 (2023)
Zhao, Y., Pang, T., Du, C., Yang, X., Li, C., Cheung, N.M.M., Lin, M.: On evaluating adversarial robustness of large vision-language models. Advances in Neural Information Processing Systems 36 (2024)
Zhao, Z., Liu, Y., Wu, H., Li, Y., Wang, S., Teng, L., Liu, D., Li, X., Cui, Z., Wang, Q., et al.: Clip in medical imaging: A comprehensive survey. arXiv preprint arXiv:2312.07353 (2023)
Zhong, Y., Xu, M., Liang, K., Chen, K., Wu, M.: Ariadne’s thread: Using text prompts to improve segmentation of infected areas from chest x-ray images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 724–733. Springer (2023)
Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. International Journal of Computer Vision 130(9), 2337–2348 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hussein, N., Shamshad, F., Naseer, M., Nandakumar, K. (2024). PromptSmooth: Certifying Robustness of Medical Vision-Language Models via Prompt Learning. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15012. Springer, Cham. https://doi.org/10.1007/978-3-031-72390-2_65
Download citation
DOI: https://doi.org/10.1007/978-3-031-72390-2_65
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72389-6
Online ISBN: 978-3-031-72390-2
eBook Packages: Computer ScienceComputer Science (R0)