Nothing Special   »   [go: up one dir, main page]

Skip to main content

PromptSmooth: Certifying Robustness of Medical Vision-Language Models via Prompt Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15012))

  • 517 Accesses

Abstract

Medical vision-language models (Med-VLMs) trained on large datasets of medical image-text pairs and later fine-tuned for specific tasks have emerged as a mainstream paradigm in medical image analysis. However, recent studies have highlighted the susceptibility of these Med-VLMs to adversarial attacks, raising concerns about their safety and robustness. Randomized smoothing is a well-known technique for turning any classifier into a model that is certifiably robust to adversarial perturbations. However, this approach requires retraining the Med-VLM-based classifier so that it classifies well under Gaussian noise, which is often infeasible in practice. In this paper, we propose a novel framework called PromptSmooth to achieve efficient certified robustness of Med-VLMs by leveraging the concept of prompt learning. Given any pre-trained Med-VLM, PromptSmooth adapts it to handle Gaussian noise by learning textual prompts in a zero-shot or few-shot manner, achieving a delicate balance between accuracy and robustness, while minimizing the computational overhead. Moreover, PromptSmooth requires only a single model to handle multiple noise levels, which substantially reduces the computational cost compared to traditional methods that rely on training a separate model for each noise level. Comprehensive experiments based on three Med-VLMs and across six downstream datasets of various imaging modalities demonstrate the efficacy of PromptSmooth. Our code and models are available at https://github.com/nhussein/PromptSmooth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In: International conference on machine learning. pp. 274–283. PMLR (2018)

    Google Scholar 

  2. Azad, B., Azad, R., Eskandari, S., Bozorgpour, A., Kazerouni, A., Rekik, I., Merhof, D.: Foundational models in medical imaging: A comprehensive survey and future vision. arXiv preprint arXiv:2310.18689 (2023)

  3. Carlini, N., Tramer, F., Dvijotham, K.D., Rice, L., Sun, M., Kolter, J.Z.: (certified!!) adversarial robustness for free! arXiv preprint arXiv:2206.10550 (2022)

  4. Cohen, J., Rosenfeld, E., Kolter, Z.: Certified adversarial robustness via randomized smoothing. In: international conference on machine learning. pp. 1310–1320. PMLR (2019)

    Google Scholar 

  5. Dong, J., Chen, J., Xie, X., Lai, J., Chen, H.: Adversarial attack and defense for medical image analysis: Methods and applications. arXiv preprint arXiv:2303.14133 (2023)

  6. Finlayson, S.G., Bowers, J.D., Ito, J., Zittrain, J.L., Beam, A.L., Kohane, I.S.: Adversarial attacks on medical machine learning. Science 363(6433), 1287–1289 (2019)

    Article  Google Scholar 

  7. Gamper, J., Alemi Koohbanani, N., Benet, K., Khuram, A., Rajpoot, N.: Pannuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification. In: Digital Pathology: 15th European Congress, ECDP 2019, Warwick, UK, April 10–13, 2019, Proceedings 15. pp. 11–19. Springer (2019)

    Google Scholar 

  8. Han, T., Nebelung, S., Khader, F., Wang, T., Mueller-Franzes, C., Försch, S., Kleesiek, C., Bressem, K.K., et al.: Medical foundation models are susceptible to targeted misinformation attacks. arXiv preprint arXiv:2309.17007 (2023)

  9. Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T.J., Zou, J.: A visual–language foundation model for pathology image analysis using medical twitter. Nature medicine 29(9), 2307–2316 (2023)

    Google Scholar 

  10. Ikezogwo, W., Seyfioglu, S., Ghezloo, F., Geva, D., Sheikh Mohammed, F., Anand, P.K., Krishna, R., Shapiro, L.: Quilt-1m: One million image-text pairs for histopathology. Advances in Neural Information Processing Systems 36 (2024)

    Google Scholar 

  11. Kather, J.N., Krisam, J., Charoentong, P., Luedde, T., Herpel, E., Weis, C.A., Gaiser, T., Marx, A., Valous, N.A., Ferber, D., et al.: Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS medicine 16(1), e1002730 (2019)

    Article  Google Scholar 

  12. Kriegsmann, K., Lobers, F., Zgorzelski, C., Kriegsmann, J., Janssen, C., Meliss, R.R., Muley, T., Sack, U., Steinbuss, G., Kriegsmann, M.: Deep learning for the detection of anatomical tissue structures and neoplasms of the skin on scanned histopathological tissue sections. Frontiers in Oncology 12, 1022967 (2022)

    Article  Google Scholar 

  13. Kumari, A., Bhardwaj, D., Jindal, S., Gupta, S.: Trust, but verify: A survey of randomized smoothing techniques. arXiv preprint arXiv:2312.12608 (2023)

  14. Laousy, O., Araujo, A., Chassagnon, G., Paragios, N., Revel, M.P., Vakalopoulou, M.: Certification of deep learning models for medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 611–621. Springer (2023)

    Google Scholar 

  15. Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Certified robustness to adversarial examples with differential privacy. In: 2019 IEEE symposium on security and privacy (SP). pp. 656–672. IEEE (2019)

    Google Scholar 

  16. Li, L., Xie, T., Li, B.: Sok: Certified robustness for deep neural networks. In: 2023 IEEE symposium on security and privacy (SP). pp. 1289–1310. IEEE (2023)

    Google Scholar 

  17. Qiu, K., Zhang, H., Wu, Z., Lin, S.: Exploring transferability for randomized smoothing. arXiv preprint arXiv:2312.09020 (2023)

  18. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from natural language supervision. In: International conference on machine learning. pp. 8748–8763. PMLR (2021)

    Google Scholar 

  19. Salman, H., Sun, M., Yang, G., Kapoor, A., Kolter, J.Z.: Denoised smoothing: A provable defense for pretrained classifiers. Advances in Neural Information Processing Systems 33, 21945–21957 (2020)

    Google Scholar 

  20. Shih, G., Wu, C.C., Halabi, S.S., Kohli, M.D., Prevedello, L.M., Cook, T.S., Sharma, A., Amorosa, J.K., Arteaga, V., Galperin-Aizenberg, M., et al.: Augmenting the national institutes of health chest radiograph dataset with expert annotations of possible pneumonia. Radiology: Artificial Intelligence 1(1), e180041 (2019)

    Google Scholar 

  21. Shrestha, P., Amgain, S., Khanal, B., Linte, C.A., Bhattarai, B.: Medical vision language pretraining: A survey. arXiv preprint arXiv:2312.06224 (2023)

  22. Shu, M., Nie, W., Huang, D.A., Yu, Z., Goldstein, T., Anandkumar, A., Xiao, C.: Test-time prompt tuning for zero-shot generalization in vision-language models. Advances in Neural Information Processing Systems 35, 14274–14289 (2022)

    Google Scholar 

  23. Silva-Rodriguez, J., Chakor, H., Kobbi, R., Dolz, J., Ayed, I.B.: A foundation language-image model of the retina (flair): Encoding expert knowledge in text supervision. arXiv preprint arXiv:2308.07898 (2023)

  24. Silva-Rodríguez, J., Colomer, A., Sales, M.A., Molina, R., Naranjo, V.: Going deeper through the gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection. Computer methods and programs in biomedicine 195, 105637 (2020)

    Article  Google Scholar 

  25. Tawsifur, R., Amith, K., Yazan, Q., Anas, T., Serkan, K., Abul, K.S.B., Tariqul, I.M., Somaya, A.M.: Zughaier susu m, khan muhammad salman, et al. Exploring the effect of image enhancement techniques on covid-19 detection using chest x-ray images. Computers in biology and medicine 132, 104319 (2021)

    Google Scholar 

  26. Wang, Z., Wu, Z., Agarwal, D., Sun, J.: Medclip: Contrastive learning from unpaired medical images and text. arXiv preprint arXiv:2210.10163 (2022)

  27. Zhang, J., Kapse, S., Ma, K., Prasanna, P., Saltz, J., Vakalopoulou, M., Samaras, D.: Prompt-mil: Boosting multi-instance learning schemes via task-specific prompt tuning. arXiv preprint arXiv:2303.12214 (2023)

  28. Zhao, Y., Pang, T., Du, C., Yang, X., Li, C., Cheung, N.M.M., Lin, M.: On evaluating adversarial robustness of large vision-language models. Advances in Neural Information Processing Systems 36 (2024)

    Google Scholar 

  29. Zhao, Z., Liu, Y., Wu, H., Li, Y., Wang, S., Teng, L., Liu, D., Li, X., Cui, Z., Wang, Q., et al.: Clip in medical imaging: A comprehensive survey. arXiv preprint arXiv:2312.07353 (2023)

  30. Zhong, Y., Xu, M., Liang, K., Chen, K., Wu, M.: Ariadne’s thread: Using text prompts to improve segmentation of infected areas from chest x-ray images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 724–733. Springer (2023)

    Google Scholar 

  31. Zhou, K., Yang, J., Loy, C.C., Liu, Z.: Learning to prompt for vision-language models. International Journal of Computer Vision 130(9), 2337–2348 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Hussein .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 130 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hussein, N., Shamshad, F., Naseer, M., Nandakumar, K. (2024). PromptSmooth: Certifying Robustness of Medical Vision-Language Models via Prompt Learning. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15012. Springer, Cham. https://doi.org/10.1007/978-3-031-72390-2_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72390-2_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72389-6

  • Online ISBN: 978-3-031-72390-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics