Nothing Special   »   [go: up one dir, main page]

Skip to main content

Real-World Visual Navigation for Cardiac Ultrasound View Planning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Echocardiography (ECHO) is commonly used to assist in the diagnosis of cardiovascular diseases (CVDs). However, manually conducting standardized ECHO view acquisitions by manipulating the probe demands significant experience and training for sonographers. In this work, we propose a visual navigation system for cardiac ultrasound view planning, designed to assist novice sonographers in accurately obtaining the required views for CVDs diagnosis. The system introduces a view-agnostic feature extractor to explore the spatial relationships between source frame views, learning the relative rotations among different frames for network regression, thereby facilitating transfer learning to improve the accuracy and robustness of identifying specific target planes. Additionally, we present a target consistency loss to ensure that frames within the same scan regress to the same target plane. The experimental results demonstrate that the average error in the apical four-chamber view (A4C) can be reduced to 7.055\(^\circ \). Moreover, results from practical clinical validation indicate that, with the guidance of the visual navigation system, the average time for acquiring A4C view can be reduced by at least 3.86 times, which is instructive for the clinical practice of novice sonographers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brégier, R.: Deep regression on manifolds: a 3D rotation case study. In: 2021 International Conference on 3D Vision (3DV), pp. 166–174. IEEE (2021)

    Google Scholar 

  2. Dave, J.K., Mc Donald, M.E., Mehrotra, P., Kohut, A.R., Eisenbrey, J.R., Forsberg, F.: Recent technological advancements in cardiac ultrasound imaging. Ultrasonics 84, 329–340 (2018)

    Article  Google Scholar 

  3. Duffy, G., et al.: High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning. JAMA Cardiol. 7(4), 386–395 (2022)

    Article  Google Scholar 

  4. Feigenbaum, H.: Evolution of echocardiography. Circulation 93(7), 1321–1327 (1996)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Li, K., et al.: Autonomous navigation of an ultrasound probe towards standard scan planes with deep reinforcement learning. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 8302–8308. IEEE (2021)

    Google Scholar 

  7. Li, K., Xu, Y., Wang, J., Ni, D., Liu, L., Meng, M.Q.H.: Image-guided navigation of a robotic ultrasound probe for autonomous spinal sonography using a shadow-aware dual-agent framework. IEEE Trans. Med. Robot. Bionics 4(1), 130–144 (2021)

    Article  Google Scholar 

  8. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  9. Narang, A., et al.: Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use. JAMA Cardiol. 6(6), 624–632 (2021)

    Article  Google Scholar 

  10. Olivier, D., McGuffin, M.J., Laporte, C.: Utilizing sonographer visual attention for probe movement guidance in cardiac point of care ultrasound. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2023)

    Google Scholar 

  11. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  12. Salehi, S.S.M., Khan, S., Erdogmus, D., Gholipour, A.: Real-time deep pose estimation with geodesic loss for image-to-template rigid registration. IEEE Trans. Med. Imaging 38(2), 470–481 (2018)

    Article  Google Scholar 

  13. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  14. Wu, L., et al.: Standard echocardiographic view recognition in diagnosis of congenital heart defects in children using deep learning based on knowledge distillation. Front. Pediatr. 9, 770182 (2022)

    Article  Google Scholar 

  15. Yeung, P.H., Aliasi, M., Haak, M., the INTERGROWTH-21st Consortium, Xie, W., Namburete, A.I.: Adaptive 3D localization of 2D freehand ultrasound brain images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434, pp. 207–217. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_20

  16. Zhao, C., Droste, R., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Visual-assisted probe movement guidance for obstetric ultrasound scanning using landmark retrieval. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part VIII. LNCS, vol. 12908, pp. 670–679. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_64

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Major Project of Science and Technology Innovation 2030 - New Generation Artificial Intelligence under Grant 2021ZD0140407, in part by the National Natural Science Foundation of China under Grant U21A20523, in part by the Beijing Natural Science Foundation under Grant (L222152, 7244325).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingying Zhang , Chuanyu Wang or Haogang Zhu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 1862 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bao, M. et al. (2024). Real-World Visual Navigation for Cardiac Ultrasound View Planning. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72378-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72377-3

  • Online ISBN: 978-3-031-72378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics