Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Evaluation Dataset for Targeted Sentiment Analysis in Long-Form Chinese News Articles

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15022))

Included in the following conference series:

  • 232 Accesses

Abstract

Compared to the prosperity of review domain with high-quality data for robust model evaluation, datasets from news domain are relatively scarce, and each dedicates to singular news subdomains for the Targeted Sentiment Analysis (TSA) task. This limitation hinders cross-domain evaluation, particularly for long-form Chinese news. Additionally, conventional TSA datasets are too brief, leading to the neglect of possible changes of target sentiment in lengthy texts. To address this gap, we propose a scheme to annotate sentiments towards targets in a quantitative way from a full-text perspective. Then, we introduce CNTSenti, a long-form Chinese news evaluation dataset, comprising 2,589 articles across five subfields, with an average length of 1,172 words. In addition, a domain adaptation strategy is presented to enhance the transfer of features across domains, incorporating target-guided windows, a prompt-based sentiment distribution alignment loss function, and a feature transferring mechanism utilizing contrastive learning. Extensive experiments have demonstrated the effectiveness of our approach and the challenging nature of the CNTSenti dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.showapi.com/.

  2. 2.

    https://www.bjnews.com.cn/.

  3. 3.

    https://chat.openai.com/.

References

  1. Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.: SemEval-2014 task 4: aspect based sentiment analysis. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 27–35 (2014)

    Google Scholar 

  2. Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: SemEval-2015 task 12: aspect based sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 486–495 (2015)

    Google Scholar 

  3. Pontiki, M., et al.: SemEval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 19–30 (2016)

    Google Scholar 

  4. Jiang, Q., Chen, L., Xu, R., Ao, X., Yang, M.: A challenge dataset and effective models for aspect-based sentiment analysis. In: EMNLP-IJCNLP, pp. 6280–6285 (2019)

    Google Scholar 

  5. Orbach, M., Toledo-Ronen, O., Spector, A., Aharonov, R., Katz, Y., Slonim, N.: YASO: a targeted sentiment analysis evaluation dataset for open-domain reviews. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 9154–9173 (2021)

    Google Scholar 

  6. Bernhardt, D., Krasa, S., Polborn, M.: Political polarization and the electoral effects of media bias. J. Public Econ. 92(5), 1092–1104 (2008)

    Article  Google Scholar 

  7. Wu, C., Wu, F., Qi, T., Huang, Y.: SentiRec: sentiment diversity-aware neural news recommendation. In: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, pp. 44–53 (2020)

    Google Scholar 

  8. Hamborg, F., Donnay, K., Gipp, B.: Automated identification of media bias in news articles: an interdisciplinary literature review. Int. J. Digit. Libr. 20(4), 391–415 (2019)

    Article  Google Scholar 

  9. Štrimaitis, R., Stefanovič, P., Ramanauskaitė, S., Slotkienė, A.: Financial context news sentiment analysis for the lithuanian language. Appl. Sci. 11(10) (2021)

    Google Scholar 

  10. Shirsat, V.S., Jagdale, R.S., Deshmukh, S.N.: Document level sentiment analysis from news articles. In: 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), pp. 1–4 (2017)

    Google Scholar 

  11. Devitt, A., Ahmad, K.: Sentiment polarity identification in financial news: a cohesion-based approach. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 984–991 (2007)

    Google Scholar 

  12. Hamborg, F., Donnay, K.: NewsMTSC: A dataset for (multi-)target-dependent sentiment classification in political news articles. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 1663–1675 (2021)

    Google Scholar 

  13. Yuan, C., et al.: Target-based sentiment annotation in Chinese financial news. In: Proceedings of the Twelfth Language Resources and Evaluation Conference (2020)

    Google Scholar 

  14. Toledo-Ronen, O., Orbach, M., Katz, Y., Slonim, N.: Multi-domain targeted sentiment analysis. In: NAACL, pp. 2751–2762 (2022)

    Google Scholar 

  15. Rietzler, A., Stabinger, S., Opitz, P., Engl, S.: Adapt or get left behind: domain adaptation through BERT language model finetuning for aspect-target sentiment classification. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4933–4941 (2020)

    Google Scholar 

  16. Bu, J., et al.: ASAP: a Chinese review dataset towards aspect category sentiment analysis and rating prediction. In: NAACL, pp. 2069–2079 (2021)

    Google Scholar 

  17. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  18. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. CoRR arxiv:1907.11692 (2019)

  19. He, P., Liu, X., Gao, J., Chen, W.: Deberta: decoding-enhanced bert with disentangled attention. In: International Conference on Learning Representations (2021)

    Google Scholar 

  20. Xu, H., Liu, B., Shu, L., Yu, P.: BERT post-training for review reading comprehension and aspect-based sentiment analysis. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 2324–2335 (2019)

    Google Scholar 

  21. Zhang, Y., Yang, Y., Liang, B., Chen, S., Qin, B., Xu, R.: An empirical study of sentiment-enhanced pre-training for aspect-based sentiment analysis. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Findings of the Association for Computational Linguistics: ACL 2023, pp. 9633–9651. (2023). https://doi.org/10.18653/v1/2023.findings-acl.612

  22. Yu, G., et al.: Making flexible use of subtasks: a multiplex interaction network for unified aspect-based sentiment analysis. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 2695–2705. (2021). https://doi.org/10.18653/v1/2021.findings-acl.238

  23. Liang, Y., Meng, F., Zhang, J., Chen, Y., Xu, J., Zhou, J.: An iterative multi-knowledge transfer network for aspect-based sentiment analysis. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 1768–1780. (2021)

    Google Scholar 

  24. Maosong, S., et al.: Thuctc: an efficient Chinese text classifier (2016)

    Google Scholar 

  25. Wang, W., Zhao, D., Zou, L., Wang, D., Zheng, W.: Extracting 5W1H event semantic elements from Chinese online news. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 644–655. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14246-8_62

    Chapter  Google Scholar 

  26. Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. MIT Press, Cambridge (2008)

    Book  Google Scholar 

  27. Sun, C., Huang, L., Qiu, X.: Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. In: NAACL, pp. 380–385 (2019)

    Google Scholar 

  28. Zhang, K., et al.: Incorporating dynamic semantics into pre-trained language model for aspect-based sentiment analysis. In: Findings of the Association for Computational Linguistics: ACL 2022, pp. 3599–3610 (2022)

    Google Scholar 

  29. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: EMNLP, pp. 38–45 (2020)

    Google Scholar 

  30. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019)

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for providing insightful comments, suggestions and feedback. This work was supported in part by Sichuan Science and Technology Program, grant number 2022ZHCG0007 and 2020YFG0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, R., Peng, T., Xie, X., Lin, D., Cui, Z., Chen, Z. (2024). An Evaluation Dataset for Targeted Sentiment Analysis in Long-Form Chinese News Articles. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15022. Springer, Cham. https://doi.org/10.1007/978-3-031-72350-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72350-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72349-0

  • Online ISBN: 978-3-031-72350-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics