Abstract
Compared to the prosperity of review domain with high-quality data for robust model evaluation, datasets from news domain are relatively scarce, and each dedicates to singular news subdomains for the Targeted Sentiment Analysis (TSA) task. This limitation hinders cross-domain evaluation, particularly for long-form Chinese news. Additionally, conventional TSA datasets are too brief, leading to the neglect of possible changes of target sentiment in lengthy texts. To address this gap, we propose a scheme to annotate sentiments towards targets in a quantitative way from a full-text perspective. Then, we introduce CNTSenti, a long-form Chinese news evaluation dataset, comprising 2,589 articles across five subfields, with an average length of 1,172 words. In addition, a domain adaptation strategy is presented to enhance the transfer of features across domains, incorporating target-guided windows, a prompt-based sentiment distribution alignment loss function, and a feature transferring mechanism utilizing contrastive learning. Extensive experiments have demonstrated the effectiveness of our approach and the challenging nature of the CNTSenti dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.: SemEval-2014 task 4: aspect based sentiment analysis. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 27–35 (2014)
Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: SemEval-2015 task 12: aspect based sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 486–495 (2015)
Pontiki, M., et al.: SemEval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 19–30 (2016)
Jiang, Q., Chen, L., Xu, R., Ao, X., Yang, M.: A challenge dataset and effective models for aspect-based sentiment analysis. In: EMNLP-IJCNLP, pp. 6280–6285 (2019)
Orbach, M., Toledo-Ronen, O., Spector, A., Aharonov, R., Katz, Y., Slonim, N.: YASO: a targeted sentiment analysis evaluation dataset for open-domain reviews. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 9154–9173 (2021)
Bernhardt, D., Krasa, S., Polborn, M.: Political polarization and the electoral effects of media bias. J. Public Econ. 92(5), 1092–1104 (2008)
Wu, C., Wu, F., Qi, T., Huang, Y.: SentiRec: sentiment diversity-aware neural news recommendation. In: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, pp. 44–53 (2020)
Hamborg, F., Donnay, K., Gipp, B.: Automated identification of media bias in news articles: an interdisciplinary literature review. Int. J. Digit. Libr. 20(4), 391–415 (2019)
Štrimaitis, R., Stefanovič, P., Ramanauskaitė, S., Slotkienė, A.: Financial context news sentiment analysis for the lithuanian language. Appl. Sci. 11(10) (2021)
Shirsat, V.S., Jagdale, R.S., Deshmukh, S.N.: Document level sentiment analysis from news articles. In: 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), pp. 1–4 (2017)
Devitt, A., Ahmad, K.: Sentiment polarity identification in financial news: a cohesion-based approach. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 984–991 (2007)
Hamborg, F., Donnay, K.: NewsMTSC: A dataset for (multi-)target-dependent sentiment classification in political news articles. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 1663–1675 (2021)
Yuan, C., et al.: Target-based sentiment annotation in Chinese financial news. In: Proceedings of the Twelfth Language Resources and Evaluation Conference (2020)
Toledo-Ronen, O., Orbach, M., Katz, Y., Slonim, N.: Multi-domain targeted sentiment analysis. In: NAACL, pp. 2751–2762 (2022)
Rietzler, A., Stabinger, S., Opitz, P., Engl, S.: Adapt or get left behind: domain adaptation through BERT language model finetuning for aspect-target sentiment classification. In: Proceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4933–4941 (2020)
Bu, J., et al.: ASAP: a Chinese review dataset towards aspect category sentiment analysis and rating prediction. In: NAACL, pp. 2069–2079 (2021)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. CoRR arxiv:1907.11692 (2019)
He, P., Liu, X., Gao, J., Chen, W.: Deberta: decoding-enhanced bert with disentangled attention. In: International Conference on Learning Representations (2021)
Xu, H., Liu, B., Shu, L., Yu, P.: BERT post-training for review reading comprehension and aspect-based sentiment analysis. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 2324–2335 (2019)
Zhang, Y., Yang, Y., Liang, B., Chen, S., Qin, B., Xu, R.: An empirical study of sentiment-enhanced pre-training for aspect-based sentiment analysis. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Findings of the Association for Computational Linguistics: ACL 2023, pp. 9633–9651. (2023). https://doi.org/10.18653/v1/2023.findings-acl.612
Yu, G., et al.: Making flexible use of subtasks: a multiplex interaction network for unified aspect-based sentiment analysis. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 2695–2705. (2021). https://doi.org/10.18653/v1/2021.findings-acl.238
Liang, Y., Meng, F., Zhang, J., Chen, Y., Xu, J., Zhou, J.: An iterative multi-knowledge transfer network for aspect-based sentiment analysis. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 1768–1780. (2021)
Maosong, S., et al.: Thuctc: an efficient Chinese text classifier (2016)
Wang, W., Zhao, D., Zou, L., Wang, D., Zheng, W.: Extracting 5W1H event semantic elements from Chinese online news. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 644–655. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14246-8_62
Quinonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. MIT Press, Cambridge (2008)
Sun, C., Huang, L., Qiu, X.: Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. In: NAACL, pp. 380–385 (2019)
Zhang, K., et al.: Incorporating dynamic semantics into pre-trained language model for aspect-based sentiment analysis. In: Findings of the Association for Computational Linguistics: ACL 2022, pp. 3599–3610 (2022)
Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: EMNLP, pp. 38–45 (2020)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019)
Acknowledgements
We thank the anonymous reviewers for providing insightful comments, suggestions and feedback. This work was supported in part by Sichuan Science and Technology Program, grant number 2022ZHCG0007 and 2020YFG0009.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, R., Peng, T., Xie, X., Lin, D., Cui, Z., Chen, Z. (2024). An Evaluation Dataset for Targeted Sentiment Analysis in Long-Form Chinese News Articles. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15022. Springer, Cham. https://doi.org/10.1007/978-3-031-72350-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-72350-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72349-0
Online ISBN: 978-3-031-72350-6
eBook Packages: Computer ScienceComputer Science (R0)